Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 85: 573-97, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27023845

RESUMO

Epidermal growth factor (EGF) and insulin receptor tyrosine kinases (RTKs) exemplify how receptor location is coupled to signal transduction. Extracellular binding of ligands to these RTKs triggers their concentration into vesicles that bud off from the cell surface to generate intracellular signaling endosomes. On the exposed cytosolic surface of these endosomes, RTK autophosphorylation selects the downstream signaling proteins and lipids to effect growth factor and polypeptide hormone action. This selection is followed by the recruitment of protein tyrosine phosphatases that inactivate the RTKs and deliver them by membrane fusion and fission to late endosomes. Coincidentally, proteinases inside the endosome cleave the EGF and insulin ligands. Subsequent inward budding of the endosomal membrane generates multivesicular endosomes. Fusion with lysosomes then results in RTK degradation and downregulation. Through the spatial positioning of RTKs in target cells for EGF and insulin action, the temporal extent of signaling, attenuation, and downregulation is regulated.


Assuntos
Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Regulação da Expressão Gênica , Insulina/genética , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Retroalimentação Fisiológica , Humanos , Insulina/metabolismo , Membranas Intracelulares/metabolismo , Fosforilação , Transporte Proteico , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo
2.
J Biol Chem ; 287(31): 26409-22, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22689575

RESUMO

Using proteomics and immunofluorescence, we demonstrated epidermal growth factor (EGF) induced recruitment of extrinsic V(1) subunits of the vacuolar (H(+))-ATPase (V-ATPase) to rat liver endosomes. This was accompanied by reduced vacuolar pH. Bafilomycin, an inhibitor of V-ATPase, inhibited EGF-stimulated DNA synthesis and mammalian target of rapamycin complex 1 (mTORC1) activation as indicated by a decrease in eukaryotic initiation factor 4E-binding 1 (4E-BP1) phosphorylation and p70 ribosomal S6 protein kinase (p70S6K) phosphorylation and kinase activity. There was no corresponding inhibition of EGF-induced Akt and extracellular signal-regulated kinase (Erk) activation. Chloroquine, a neutralizer of vacuolar pH, mimicked bafilomycin effects. Bafilomycin did not inhibit the association of mTORC1 with Raptor nor did it affect AMP-activated protein kinase activity. Rather, the intracellular concentrations of essential but not non-essential amino acids were decreased by bafilomycin in EGF-treated primary rat hepatocytes. Cycloheximide, a translation elongation inhibitor known to augment intracellular amino acid levels, prevented the effect of bafilomycin on amino acids levels and completely reversed its inhibition of EGF-induced mTORC1 activation. In vivo administration of EGF stimulated the recruitment of Ras homologue enriched in brain (Rheb) but not mammalian target of rapamycin (mTOR) to endosomes and lysosomes. This was inhibited by chloroquine treatment. Our results suggest a role for vacuolar acidification in EGF signaling to mTORC1.


Assuntos
Fator de Crescimento Epidérmico/fisiologia , Proteínas/metabolismo , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras/metabolismo , Aminoácidos/metabolismo , Animais , Células Cultivadas , Cloroquina/farmacologia , Endossomos/metabolismo , Receptores ErbB/metabolismo , Feminino , Hepatócitos/metabolismo , Macrolídeos/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Mitose , Complexos Multiproteicos , Fosfoproteínas/metabolismo , Fosforilação , Multimerização Proteica , Subunidades Proteicas/metabolismo , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores
3.
Nature ; 445(7130): 881-5, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17293876

RESUMO

Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing beta-cells, and two linkage disequilibrium blocks that contain genes potentially involved in beta-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Genoma Humano , Estudos de Casos e Controles , Proteínas de Transporte de Cátions/genética , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 8/genética , França , Humanos , Desequilíbrio de Ligação , Transportador 8 de Zinco
4.
J Cell Biochem ; 109(6): 1103-8, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20143338

RESUMO

There is now abundant evidence that the intracellular concentration of the EGFR and many other receptors for peptide hormones and growth factors is important for the temporal and spatial regulation of cell signaling. Spatial control is achieved by the selective compartmentalization of signaling components into endosomes. However further control may be effected by sequestration into sub-domains within a given organelle such as membrane rafts which are dynamic, nano scale structures rich in cholesterol and sphingolipids. Current data suggest the presence of EGFRs in non-caveolae membrane rafts. High doses of EGF seem to promote the sorting of EGFR to late endosomes through a raft/cholesterol dependant mechanism, implicating them in EGFR degradation. However our work and that of others has led us to propose a model in which membrane rafts in late endosomes sequester highly active EGFR leading to the recruitment and activation of MAPK in this compartment.


Assuntos
Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Endossomos/metabolismo , Humanos , Modelos Biológicos
5.
J Cell Biochem ; 107(1): 96-103, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19288512

RESUMO

We have investigated epidermal growth factor (EGF)-induced compartmentalization and activation of the EGF receptor (EGFR) in rat liver plasma membrane (PM) raft subfractions prepared by three different biochemical methods previously developed to characterize the composition of membrane rafts. Only detergent-resistant membranes (DRMs) possessed the basic characteristics attributed to membrane rafts. Following the administration of a low dose of EGF (1 microg/100 g BW) the content of EGFR in PM-DRMs did not change significantly; whereas after a higher dose of EGF (5 microg/100 g BW) we observed a rapid and marked disappearance of EGFR (around 80%) from both PM and DRM fractions. Interestingly, following the administration of either a low or high dose of EGF, the pool of EGFR in the PM-DRM fraction became highly Tyr-phosphorylated. In accordance with the higher level of EGFR Tyr-Phosphorylation, EGF induced an augmented recruitment of Grb2 and Shc proteins to PM-DRMs compared with whole PM. Furthermore neither high nor low doses of EGF affected the caveolin content in DRMs and PM. These observations suggest that EGFR located in DRMs are competent for signaling, and non-caveolae PM rafts are involved in the compartmentalization and internalization of the EGFR.


Assuntos
Fracionamento Celular/métodos , Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Hepatócitos/metabolismo , Transdução de Sinais/fisiologia , Animais , Cavéolas/metabolismo , Detergentes , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Feminino , Fígado/citologia , Fígado/metabolismo , Microdomínios da Membrana/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Met Ions Life Sci ; 192019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30855109

RESUMO

Vanadium has been known for centuries to have beneficial effects on health and has the potential to be used as an alternative to other diabetic and anticancer medicines. The beneficial effects of vanadium salts or organic compounds have been explored in vitro, ex vivo, and in vivo in animal and human studies. A consensus among researchers is that increased bioavailability of these compounds could markedly increase the efficacy of this class of compounds. In addition, because many commercially available vanadium derivatives are being used by body builders to enhance performance, more understanding of their mode of action is desirable. Future studies of various vanadium compounds need to evaluate their biodistribution, biotransformation, and the effects of food and formulation on the bioavailability of the compounds. To date, most studies in humans have employed vanadium salts, mainly vanadyl sulfate, and dose-limiting side effects were reported at therapeutic doses. One organic vanadium compound, bis(ethylmaltolato)oxovanadium(IV), had improved efficacy compared to the vanadyl sulfate and was selected for Phase 1 and 2 clinical trials. Future studies should be conducted as randomized, placebo controlled trials lasting several months, with monitoring of both fasting blood glucose and hemoglobin A1c. Now, the most promising potential uses of vanadium compounds are as nutritional supplements to control glucose levels and perhaps, as an anticancer agent potentiated by immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Hipoglicemiantes/farmacologia , Compostos de Vanádio/farmacologia , Vanádio/farmacologia , Animais , Ensaios Clínicos como Assunto , Suplementos Nutricionais , Desenvolvimento de Medicamentos , Humanos , Distribuição Tecidual
7.
Endocrinology ; 159(8): 2966-2977, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29901692

RESUMO

Muscle atrophy arises because of many chronic illnesses, as well as from prolonged glucocorticoid treatment and nutrient deprivation. We previously demonstrated that the USP19 deubiquitinating enzyme plays an important role in chronic glucocorticoid- and denervation-induced muscle wasting. However, the mechanisms by which USP19 exerts its effects remain unknown. To explore this further, we fasted mice for 48 hours to try to identify early differences in the response of wild-type and USP19 knockout (KO) mice that could yield insights into the mechanisms of USP19 action. USP19 KO mice manifested less myofiber atrophy in response to fasting due to increased rates of protein synthesis. Insulin signaling was enhanced in the KO mice, as revealed by lower circulating insulin levels, increased insulin-stimulated glucose disposal and phosphorylation of Akt and S6K in muscle, and improved overall glucose tolerance. Glucocorticoid signaling, which is essential in many conditions of atrophy, was decreased in KO muscle, as revealed by decreased expression of glucocorticoid receptor (GR) target genes upon both fasting and glucocorticoid treatment. This decreased GR signaling was associated with lower GR protein levels in the USP19 KO muscle. Restoring the GR levels in USP19-deficient muscle was sufficient to abolish the protection from myofiber atrophy. Expression of GR target genes also correlated with that of USP19 in human muscle samples. Thus, USP19 modulates GR levels and in so doing may modulate both insulin and glucocorticoid signaling, two critical pathways that control protein turnover in muscle and overall glucose homeostasis.


Assuntos
Endopeptidases/genética , Glucocorticoides/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Receptores de Glucocorticoides/genética , Idoso , Animais , Glicemia/metabolismo , Endopeptidases/metabolismo , Jejum/metabolismo , Feminino , Expressão Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Mioblastos , Biossíntese de Proteínas , Ácido Pirúvico/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais
8.
Endocrinology ; 148(6): 2944-54, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17363458

RESUMO

In this study, the preparation of detergent-resistant membranes (DRMs) and the immunoisolation of intracellular vesicles enriched in raft markers were used to investigate the effect of physiological doses of epidermal growth factor (EGF) in vivo on the compartmentalization and activation of EGF receptor (EGFR) in rat liver endosomes. Both of these techniques show that after EGF administration, a distinctive population of intracellular EGFR, which was characterized by a high level of tyrosine phosphorylation, accumulated in endosomes. EGFR recruited to early endosomes were more tyrosine phosphorylated than those from late endosomes. However, the level of tyrosine phosphorylation of EGFR in DRMs isolated from early and late endosomes was comparable, suggesting that EGFR in endosomal DRMs are more resistant to tyrosine dephosphorylation. In accordance with the higher level of Tyr phosphorylation, EGF induced an augmented recruitment of Grb2 and Shc to endosomal DRMs compared with whole endosomes. Furthermore, a proteomic analysis identified a selective increase of many alpha-subunits of heterotrimeric G proteins in endosomal DRMs in response to EGF. These observations suggest that a distinctive pool of endocytic EGFR, potentially competent for signaling, is actively trafficking through intracellular compartments with the characteristic of lipid rafts.


Assuntos
Compartimento Celular/fisiologia , Endossomos/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/fisiologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Detergentes/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Feminino , Fígado/química , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Ubiquitina/metabolismo
9.
Can J Diabetes ; 41(1): 108-113, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27614806

RESUMO

Insulin signalling begins with binding to its cell surface insulin receptor (IR), which is a tyrosine kinase. The insulin receptor kinase (IRK) is subsequently autophosphorylated and activated to tyrosine phosphorylate key cellular substrates that are essential for entraining the insulin response. Although IRK activation begins at the cell surface, it is maintained and augmented following internalization into the endosomal system (ENS). The peroxovanadium compounds (pVs) were discovered to activate the IRK in the absence of insulin and lead to a full insulin response. Thus, IRK activation is both necessary and sufficient for insulin signalling. Furthermore, this could be shown to occur with activation of only the endosomal IRK. The mechanism of pV action was shown to be the inhibition of IRK-associated phosphotyrosine phosphatases (PTPs). Our studies showed that the duration and intensity of insulin signalling are modulated within ENS by the recruitment of cellular substrates to ENS; intra-endosomal acidification, which promotes dissociation of insulin from the IRK; an endosomal acidic insulinase, which degrades intra-endosomal insulin; and IRK-associated PTPs, which dephosphorylate and, hence, deactivate the IRK. Therefore, the internalization of IRKs is central to insulin signalling and its regulation.


Assuntos
Insulina/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Insulina/farmacologia , Insulina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
10.
Endocrinology ; 147(5): 2383-91, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16455781

RESUMO

The expression of IGF-binding protein-1 (IGFBP-1) is induced in rat liver by dexamethasone and glucagon and is completely inhibited by 100 nM insulin. Various studies have implicated phosphatidylinositol 3-kinase, protein kinase B (Akt), phosphorylation of the transcription factors forkhead in rhabdomyosarcoma 1 (Foxo1)/Foxo3, and the mammalian target of rapamycin (mTOR) in insulin's effect. In this study we examined insulin regulation of IGFBP-1 in both subconfluent and confluent hepatocytes. In subconfluent hepatocytes, insulin inhibition of IGFBP-1 mRNA levels was blocked by inhibiting PI3 kinase activation, and there was a corresponding inhibition of Foxo1/Foxo3 phosphorylation. In these same cells, inhibition of the insulin effect by rapamycin occurred in the presence of insulin-induced Foxo1/Foxo3 phosphorylation. In confluent hepatocytes, insulin could not activate the phosphatidylinositol 3-kinase (PI3 kinase)-Akt-Foxo1/Foxo3 pathway, but still inhibited IGFBP-1 gene expression in an mTOR-dependent manner. In subconfluent hepatocytes, the serine/threonine phosphatase inhibitor okadaic acid (100 nM) partially inhibited IGFBP-1 gene expression by 40%, but did not produce phosphorylation of either Akt or Foxo proteins. In contrast, 1 nm insulin inhibited the IGFBP-1 mRNA level by 40% and correspondingly activated Akt and Foxo1/Foxo3 phosphorylation to a level comparable to that observed with 100 nM insulin. These results suggest a potential role for a serine/threonine phosphatase(s) in the regulation of IGFBP-1 gene transcription, which is not downstream of mTOR and is independent of Akt. In conclusion, we have found that in rat liver, insulin inhibition of IGFBP-1 mRNA levels can occur in the absence of the phosphorylation of Foxo1/Foxo3, whereas activation of the mTOR pathway is both necessary and sufficient.


Assuntos
Regulação da Expressão Gênica , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/biossíntese , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Insulina/metabolismo , Fígado/metabolismo , Proteínas Quinases/metabolismo , Androstadienos/farmacologia , Animais , Western Blotting , Células Cultivadas , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Genes Dominantes , Glucagon/metabolismo , Hepatócitos/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ácido Okadáico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Suínos , Serina-Treonina Quinases TOR , Fatores de Tempo , Wortmanina
11.
Endocrinology ; 147(2): 912-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16269466

RESUMO

Previous work has shown that bisperoxo(1,10-phenanthroline)-oxovanadate(v) anion [bpV(phen)] induces potent insulin-mimicking effects in the rat, selectively activates the endosomal (EN) insulin receptor kinase (IRK) in liver, and markedly abolishes endosomal IRK-associated phosphotyrosine phosphatase (PTP) activity while reducing that of total ENs by approximately 30%. In this study we examined the relatively selective effect of bpv(phen) on endosomal PTP activities for the purpose of defining IRK-associated PTP(s). Using an in-gel PTP assay, we detected multiple (approximately 20) species of endosomal PTP (30 to >220 kDa), with five that were markedly inhibited after in vivo bpV(phen) administration. Using a combination of Mono Q anionic exchange chromatography and immunoblotting, we demonstrated that LAR (leukocyte common antigen-related), PTP-alpha, and PTP-1B were present in endosomal subfractions not significantly inhibited by bpv(phen). PTP-1B activity was assayed in immunoprecipitates from hepatic ENs of control and bpV(phen)-treated rats and was found to be inhibited by approximately 30% after bpv(phen) treatment. To clarify the role of PTP-1B in dephosphorylating IRK, we prepared hepatic ENs from wild-type and PTP-1B-null mice. We found that the phosphotyrosine content of IRK was similar in these two types of ENs, and that IRK dephosphorylation was not affected in ENs from PTP-1B-null mice compared with that in ENs from wild-type mice. These data suggest that LAR , PTP-alpha, and PTP-1B are not candidates for the IRK-associated PTP in hepatic ENs, and that IRK dephosphorylation in ENs may result from the concerted actions of several PTPs.


Assuntos
Endossomos/enzimologia , Inibidores Enzimáticos/farmacologia , Fígado/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Receptor de Insulina/metabolismo , Animais , Endossomos/efeitos dos fármacos , Feminino , Fígado/efeitos dos fármacos , Camundongos , Camundongos Knockout , Compostos Organometálicos/farmacologia , Fenantrolinas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/efeitos dos fármacos
12.
Mol Endocrinol ; 17(5): 935-44, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12595575

RESUMO

In primary rat hepatocyte cultures, activation of phosphatidylinositol 3-kinase is both necessary and sufficient to account for epidermal growth factor (EGF)-induced DNA synthesis. In these cells, three major p85-containing complexes were formed after EGF treatment: ErbB3-p85, Shc-p85, and a multimeric Gab2-Grb2-SHP2-p85, which accounted for more than 80% of total EGF-induced PI3K activity (Kong, M., C. Mounier, J. Wu, and B. I. Posner, J Biol Chem, 2000, 275:36035-36042). More recently, we found that EGF-dependent tyrosine phosphorylation of endogenous Gab2 is essential for EGF-induced DNA synthesis in rat hepatocytes. Here we show that, after EGF treatment, ErbB3-p85 and Shc-p85 complexes were localized to plasma membrane and endosomes, whereas the multimeric Gab2-Grb2-SHP2-p85 complex was formed rapidly (peak at 30 sec) and exclusively in cytosol. Western blotting of subcellular fractions from intact liver and immunofluorescence analyses in cultured hepatocytes demonstrated that EGF did not promote the association of cytosolic Gab2 with cell membranes. These observations prompted us to evaluate the role of the PH domain of Gab2 in regulating its function. Overexpression of the PH domain of Gab2 did not affect EGF-induced Gab2 phosphorylation, PI3K activation, and DNA synthesis. Overexpressed Gab2 lacking the PH domain (DeltaPHGab2) was comparable to wild-type Gab2 in respect to EGF-induced tyrosine phosphorylation, recruitment of p85, and DNA synthesis. In summary, after EGF stimulation, ErbB3, Shc, and Gab2 are differentially compartmentalized in rat liver, where they associate with and activate PI3K. Our data demonstrate that Gab2 mediates EGF-induced PI3K activation and DNA synthesis in a PH domain-independent manner.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fator de Crescimento Epidérmico/farmacologia , Fosfoproteínas/metabolismo , Tirosina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/efeitos dos fármacos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proteínas Sanguíneas/química , Células Cultivadas , Citosol/efeitos dos fármacos , Citosol/metabolismo , DNA/biossíntese , DNA/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Substâncias Macromoleculares , Mitógenos/farmacologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/química , Fosfoproteínas/efeitos dos fármacos , Fosforilação , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Receptor ErbB-3/efeitos dos fármacos , Receptor ErbB-3/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Adaptadoras da Sinalização Shc , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Domínios de Homologia de src
13.
Curr Opin Investig Drugs ; 4(4): 430-4, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12808882

RESUMO

The insulin receptor kinase (IRK) is activated following insulin binding and is rapidly internalized into endosomes (ENs) from which signaling occurs. Four endosomal processes limit the intensity and duration of intracellular signal transduction: (i) insulin degradation by an endosomal acidic insulinase, cathepsin D, which removes the ligand leading to receptor deactivation; (ii) IRK dephosphorylation by an associated protein tyrosine phosphatase abrogates its activated state; (iii) acidification of ENs changes IRK conformation reducing its affinity for ligand and inactivating its kinase; and (iv) trafficking within ENs can sequester activated IRK from signal transduction elements. Each process presents an opportunity for new potential therapeutic approaches.


Assuntos
Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Hipoglicemiantes/farmacologia , Receptor de Insulina/metabolismo , Animais , Humanos , Insulina/metabolismo , Insulisina/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptor de Insulina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos
14.
J Biomed Biotechnol ; 2(1): 22-30, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12488596

RESUMO

The effects of several vanadates (ie, orthovanadate, pervanadate, and two stable peroxovanadium compounds) on basal and insulin-stimulated 2-DG transport in insulin target and nontarget cell lines are reported, herein. In nontarget cells, exposure to vanadates (5 x 10(-6) to 10(-4) mol/L) resulted in 2-DG transport stimulatory responses similar to those observed in 2-DG transport post exposure to 667 nmol/L insulin alone, or insulin in combination with vanadates. In 3T3-L1 adipocytes and L6 myotubes, exposure to a vanadate compound or 67 nmol/L insulin, stimulated 2-DG transport dramatically. Again, this effect on stimulated transport was similar to 2-DG transport post-treatment with the effective vanadates in combination with insulin. While pervanadate or stable peroxovanadates stimulated 2-DG transport at 10(-5) to 10(-6) mol/L, orthovanadate up to 10(-4) mol/L was not effective in stimulating 2-DG transport in any of the cell lines tested. The data indicate that the various peroxovanadates are clearly superior insulin mimetics while a more limited insulin mimesis is observed with orthovanadate over a wide variety of cell types.

15.
Methods Enzymol ; 535: 293-307, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24377930

RESUMO

Endosomes are isolated from rat liver using high-speed centrifugation through sucrose density gradients. They are distinguishable from Golgi elements, with which they coisolate, by their capacity to concentrate internalized protein ligands (viz., insulin and epidermal growth factor (EGF)) in receptor-bound intact form. Endosomal signaling to relevant substrates can be readily shown for insulin and EGF receptor tyrosine kinases (RTKs), respectively. Both RTKs undergo dephosphorylation in endosomes. This can be inhibited by the powerful phosphotyrosine phosphatase inhibitors-the peroxovanadium compounds. In vivo administration of these compounds has been shown to activate selectively the endosomal insulin receptor kinase and promote signaling. Taken together, these observations constitute the basis for the signaling endosome hypothesis for which there is now ample evidence. Furthermore, a substantial body of work has documented the importance of endosomal signaling for growth, development, and disease.


Assuntos
Endossomos/metabolismo , Fator de Crescimento Epidérmico/fisiologia , Insulina/fisiologia , Transdução de Sinais , Animais , Fracionamento Celular , Fígado/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/metabolismo
16.
Mol Biosyst ; 8(5): 1461-71, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22362066

RESUMO

Although the important role of protein phosphorylation in insulin signaling networks is well recognized, its analysis in vivo has not been pursued in a systematic fashion through proteome-wide studies. Here we undertake a global analysis of insulin-induced changes in the rat liver cytoplasmic and endosomal phosphoproteome by sequential enrichment of phosphoproteins and phosphopeptides. After subcellular fractionation proteins were denatured and loaded onto iminodiacetic acid-modified Sepharose with immobilized Al³âº ions (IMAC-Al resin). Retained phosphoproteins were eluted with 50 mM phosphate and proteolytically digested. The digest was then loaded onto an IMAC-Al resin and phosphopeptides were eluted with 50 mM phosphate, and resolved by 2-dimensional liquid chromatography, which combined offline weak anion exchange and online reverse phase separations. The peptides were identified by tandem mass spectrometry, which also detected the phosphorylation sites. Non-phosphorylated peptides found in the flow-through of the IMAC-Al columns were also analyzed providing complementary information for protein identification. In this study we enriched phosphopeptides to ~85% purity and identified 1456 phosphopeptides from 604 liver phosphoproteins. Eighty-nine phosphosites including 45 novel ones in 83 proteins involved in vesicular transport, metabolism, cell motility and structure, gene expression and various signaling pathways were changed in response to insulin treatment. Together these findings could provide potential new markers for evaluating insulin action and resistance in obesity and diabetes.


Assuntos
Insulina/metabolismo , Fosfopeptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Transporte Biológico/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Feminino , Células HeLa , Humanos , Injeções Intravenosas , Insulina/administração & dosagem , Insulina/farmacologia , Fígado , Dados de Sequência Molecular , Fosfopeptídeos/química , Fosfoproteínas/química , Fosfoproteínas/isolamento & purificação , Fosforilação/efeitos dos fármacos , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sefarose , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo
18.
Prog Brain Res ; 181: 1-16, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20478429

RESUMO

Peptide hormones and growth factors initiate signalling by binding to and activating their cell surface receptors. The activated receptors interact with and modulate the activity of cell surface enzymes and adaptor proteins which entrain a series of reactions leading to metabolic and proliferative signals. Rapid internalization of ligand-receptor complexes into the endosomal system both prolongs and augments events initiated at the cell surface. In addition endocytosis brings activated receptors into contact with a wider range of substrates giving rise to unique signalling events critical for modulating proliferation and apoptosis. Within the endosomal system, receptor function is regulated by lowering vacuolar pH, augmenting ligand proteolysis and promoting receptor kinase dephosphorylation. Ubiquitination-deubiquitination plays a key role in regulating receptor traffic through the endosomal system resulting in either recycling to the cell surface or degradation in multivesicular-lysosomal elements. From a clinical perspective there are several studies showing that manipulating endosomal processes may constitute a new therapeutic strategy.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Hormônios Peptídicos/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/metabolismo , Endossomos/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
19.
Rapid Commun Mass Spectrom ; 21(16): 2671-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17659651

RESUMO

Covalent modification of peptides and proteins with compounds containing stable isotopes (isotope tagging) has become an essential tool to detect dynamic changes in the proteome following external or internal influence; however, using terminal amino groups for global isotope labelling of tryptic peptides is challenged by the similar reactivity of the amino groups of lysine residues. We describe a new quantitative method based on selective tagging of the terminal amino groups of tryptic peptides with pentafluorophenyl esters containing stable isotopes. The labelled peptides were resolved by two-dimensional nanoflow liquid chromatography on weak anion-exchange and reversed-phase columns and then identified and quantified by tandem mass spectrometry. The method was applied to compare the proteomes of plasma membranes from proliferating and differentiated human colorectal adenocarcinoma (Caco-2) cells and endosomes purified from the livers of rats stimulated with insulin and epidermal growth factor. The comparison of the results obtained by isotope tagging and biochemical assays demonstrate that global isotope tagging with pentafluorophenyl esters allows accurate quantification of complex protein samples.


Assuntos
Biomarcadores Tumorais/análise , Cromatografia Líquida de Alta Pressão/métodos , Fígado/metabolismo , Proteínas de Neoplasias/análise , Proteoma/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Tripsina/química , Animais , Células CACO-2 , Humanos , Marcação por Isótopo/métodos , Peptídeos/química , Proteoma/química , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Can J Physiol Pharmacol ; 84(7): 713-24, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16998535

RESUMO

Insulin, after binding to its receptor, regulates many cellular processes and the expression of several genes. For a subset of genes, insulin exerts a negative effect on transcription; for others, the effect is positive. Insulin controls gene transcription by modifying the binding of transcription factors on insulin-response elements or by regulating their transcriptional activities. Different insulin-signaling cascades have been characterized as mediating the insulin effect on gene transcription. In this review, we analyze recent data on the molecular mechanisms, mostly in the liver, through which insulin exerts its effect. We first focus on the key transcription factors (viz. Foxo, sterol-response-element-binding protein family (SREBP), and Sp1) involved in the regulation of gene transcription by insulin. We then present current information on the way insulin downregulates and upregulates gene transcription, using as examples of downregulation phosphoenolpyruvate carboxykinase (PEPCK) and insulin-like growth factor binding protein 1 (IGFBP-1) genes and of upregulation the fatty acid synthase and malic enzyme genes. The last part of the paper focuses on the signaling cascades activated by insulin in the liver, leading to the modulation of gene transcription.


Assuntos
Insulina/farmacologia , Fígado/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/metabolismo , Fígado/metabolismo , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Receptor de Insulina/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA