Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Therm Biol ; 112: 103391, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796880

RESUMO

For reproducing animals, maintaining energy balance despite thermoregulatory challenges is important for surviving and successfully raising offspring. This is especially apparent in small endotherms that exhibit high mass-specific metabolic rates and live in unpredictable environments. Many of these animals use torpor, substantially reducing their metabolic rate and often body temperature to cope with high energetic demands during non-foraging periods. In birds, when the incubating parent uses torpor, the lowered temperatures that thermally sensitive offspring experience could delay development or increase mortality risk. We used thermal imaging to noninvasively explore how nesting female hummingbirds sustain their own energy balance while effectively incubating their eggs and brooding their chicks. We located 67 active Allen's hummingbird (Selasphorus sasin) nests in Los Angeles, California and recorded nightly time-lapse thermal images at 14 of these nests for 108 nights using thermal cameras. We found that nesting females usually avoided entering torpor, with one bird entering deep torpor on two nights (2% of nights), and two other birds possibly using shallow torpor on three nights (3% of nights). We also modeled nightly energetic requirements of a bird experiencing nest temperatures vs. ambient temperature and using torpor or remaining normothermic, using data from similarly-sized broad-billed hummingbirds. Overall, we suggest that the warm environment of the nest, and possibly shallow torpor, help brooding female hummingbirds reduce their own energy requirements while prioritizing the energetic demands of their offspring.


Assuntos
Regulação da Temperatura Corporal , Torpor , Animais , Feminino , Temperatura Corporal , Metabolismo Energético , Galinhas
2.
J Exp Biol ; 225(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34989393

RESUMO

Many endotherms use torpor, saving energy by a controlled reduction of their body temperature and metabolic rate. Some species (e.g. arctic ground squirrels, hummingbirds) enter deep torpor, dropping their body temperature by 23-37°C, while others can only enter shallow torpor (e.g. pigeons, 3-10°C reduction). However, deep torpor in mammals can increase predation risk (unless animals are in burrows or caves), inhibit immune function and result in sleep deprivation, so even for species that can enter deep torpor, facultative shallow torpor might help balance energy savings with these potential costs. Deep torpor occurs in three avian orders, but the trade-offs of deep torpor in birds are unknown. Although the literature hints that some bird species (mousebirds and perhaps hummingbirds) can use both shallow and deep torpor, little empirical evidence of such an avian heterothermy spectrum within species exists. We infrared imaged three hummingbird species that are known to use deep torpor, under natural temperature and light cycles, to test whether they were also capable of shallow torpor. All three species used both deep and shallow torpor, often on the same night. Depending on the species, they used shallow torpor for 5-35% of the night. The presence of a heterothermic spectrum in these bird species indicates a capacity for fine-scale physiological and genetic regulation of avian torpid metabolism.


Assuntos
Torpor , Animais , Aves/fisiologia , Temperatura Corporal , Regulação da Temperatura Corporal/fisiologia , Metabolismo Energético , Mamíferos/fisiologia , Torpor/fisiologia
3.
J Exp Biol ; 224(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33914039

RESUMO

Free-living animals often engage in behaviour that involves high rates of workload and results in high daily energy expenditure (DEE), such as reproduction. However, the evidence for elevated DEE accompanying reproduction remains equivocal. In fact, many studies have found no difference in DEE between reproducing and non-reproducing females. One of the hypotheses explaining the lack of difference is the concept of an 'energetic ceiling'. However, it is unclear whether the lack of increase in energy expenditure is due to the existence of an energetic ceiling and/or compensation by males during parental care. To investigate whether an energetic ceiling exists, we experimentally manipulated foraging effort in captive zebra finches, Taeniopygia guttata, creating two groups with high and low foraging efforts followed by both groups breeding in the low foraging effort common garden condition. DEE was measured in both sexes throughout the experiment. We show sex-specific energy management strategies in response to training for increased foraging effort prior to reproduction. Specifically, males and females responded differently to the high foraging effort treatment and subsequently to chick rearing in terms of energy expenditure. Our results also suggest that there is an energetic ceiling in females and that energetic costs incurred prior to reproduction can be carried over into subsequent stages of reproduction in a sex-specific manner.


Assuntos
Tentilhões , Animais , Feminino , Masculino , Reprodução
4.
J Exp Biol ; 224(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33737390

RESUMO

Foraging at elevated rates to provision offspring is thought to be an energetically costly activity and it has been suggested that there are physiological costs associated with the high workload involved. However, for the most part, evidence for costs of increased foraging and/or reproductive effort is weak. Furthermore, despite some experimental evidence demonstrating negative effects of increased foraging and parental effort, the physiological mechanisms underlying costs associated with high workload remain poorly understood. To examine how high workload affects haematology, oxidative stress and reproductive output, we experimentally manipulated foraging effort in captive zebra finches, Taeniopygia guttata, using a previously described technique, and allowed individuals to breed first in low foraging effort conditions and then in high foraging effort conditions. We found that birds upregulated haematocrit and haemoglobin concentration in response to training. Birds subjected to increased workload during reproduction had lower fecundity, although final reproductive output was not significantly different than that of controls. Offspring of parents subjected to high workload during reproduction also had higher oxidative stress when they were 90 days of age. Total antioxidant capacity and reactive oxygen metabolites of birds responded differently in the two breeding attempts, but we did detect an overall increase in oxidative stress in response to training in either attempt, which could explain the lower fecundity observed in birds subjected to increased workload during reproduction.


Assuntos
Tentilhões , Animais , Fertilidade , Estresse Oxidativo , Reprodução
5.
J Anim Ecol ; 89(5): 1254-1261, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022903

RESUMO

Within-clade allometric relationships represent standard laws of scaling between energy and size, and their outliers provide new avenues for physiological and ecological research. According to the metabolic-level boundaries hypothesis, metabolic rates as a function of mass are expected to scale closer to 0.67 when driven by surface-related processes (e.g. heat or water flux), while volume-related processes (e.g. activity) generate slopes closer to one. In birds, daily energy expenditure (DEE) scales with body mass (M) in the relationship logDEE=2.35+0.68×logM , consistent with surface-level processes driving the relationship. However, taxon-specific patterns differ from the scaling slope of all birds. Hummingbirds have the highest mass-specific metabolic rates among all vertebrates. Previous studies on a few hummingbird species, without accounting for the phylogeny, estimated that the DEE-body mass relationship for hummingbirds was logDEE=1.72+1.21×logM . In Contrast to the theoretical expectations, this slope >1 indicates that larger hummingbirds are less metabolically efficient than smaller hummingbirds. We collected DEE and mass data for 12 hummingbird species, which, combined with published data, represented 17 hummingbird species in eight of nine hummingbird clades over a sixfold size range of body size (2.7-17.5 g). After accounting for phylogenetic relatedness, we found DEE scales with body mass as logDEE=2.04+0.95×logM . This slope of 0.95 is lower than previously estimated for hummingbirds, but much higher than the slope for all birds (0.68). The high slopes of torpor, hovering and flight potentially explain the high interspecific DEE slope for hummingbirds compared to other endotherms.


Assuntos
Metabolismo Energético , Voo Animal , Animais , Aves , Tamanho Corporal , Filogenia
6.
Proc Biol Sci ; 285(1873)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491168

RESUMO

Wing kinematics and morphology are influential upon the aerodynamics of flight. However, there is a lack of studies linking these variables to metabolic costs, particularly in the context of morphological adaptation to body size. Furthermore, the conversion efficiency from chemical energy into movement by the muscles (mechanochemical efficiency) scales with mass in terrestrial quadrupeds, but this scaling relationship has not been demonstrated within flying vertebrates. Positive scaling of efficiency with body size may reduce the metabolic costs of flight for relatively larger species. Here, we assembled a dataset of morphological, kinematic, and metabolic data on hovering hummingbirds to explore the influence of wing morphology, efficiency, and mass on hovering metabolic rate (HMR). We hypothesize that HMR would decline with increasing wing size, after accounting for mass. Furthermore, we hypothesize that efficiency will increase with mass, similarly to other forms of locomotion. We do not find a relationship between relative wing size and HMR, and instead find that the cost of each wingbeat increases hyperallometrically while wingbeat frequency declines with increasing mass. This suggests that increasing wing size is metabolically favourable over cycle frequency with increasing mass. Further benefits are offered to larger hummingbirds owing to the positive scaling of efficiency.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Tamanho Corporal , Metabolismo Energético , Voo Animal , Animais , Fenômenos Biomecânicos , Brasil
7.
J Exp Biol ; 219(Pt 22): 3532-3543, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27595849

RESUMO

The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres.


Assuntos
Aves/fisiologia , Reação de Fuga/fisiologia , Voo Animal/fisiologia , Aceleração , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Músculos/anatomia & histologia , Músculos/fisiologia , Tamanho do Órgão , Rotação , Fatores de Tempo , Incerteza
8.
J Exp Biol ; 219(Pt 22): 3518-3531, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27595850

RESUMO

Hummingbirds are nature's masters of aerobatic manoeuvres. Previous research shows that hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g, and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g, and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees of freedom on a stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the 'helicopter model' that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species.


Assuntos
Aves/fisiologia , Reação de Fuga/fisiologia , Voo Animal/fisiologia , Animais , Fenômenos Biomecânicos , Aves/anatomia & histologia , Movimento (Física) , Rotação , Especificidade da Espécie
9.
J Exp Biol ; 218(Pt 9): 1410-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25954044

RESUMO

The non-sperm components of an ejaculate, such as copulatory plugs, can be essential to male reproductive success. But the costs of these ejaculate components are often considered trivial. In polyandrous species, males are predicted to increase energy allocation to the production of non-sperm components, but this allocation is often condition dependent and the energetic costs of their production have never been quantified. Red-sided garter snakes (Thamnophis sirtalis parietalis) are an excellent model with which to quantify the energetic costs of non-sperm components of the ejaculate as they exhibit a dissociated reproductive pattern in which sperm production is temporally disjunct from copulatory plug production, mating and plug deposition. We estimated the daily energy expenditure and resting metabolic rate of males after courtship and mating, and used bomb calorimetry to estimate the energy content of copulatory plugs. We found that both daily energy expenditure and resting metabolic rate were significantly higher in small mating males than in courting males, and a single copulatory plug without sperm constitutes 5-18% of daily energy expenditure. To our knowledge, this is the first study to quantify the energetic expense of size-dependent ejaculate strategies in any species.


Assuntos
Metabolismo Basal , Colubridae/fisiologia , Metabolismo Energético , Comportamento Sexual Animal , Espermatozoides/fisiologia , Animais , Masculino , Reprodução
10.
Poult Sci ; 103(3): 103375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198915

RESUMO

Domestic laying hens rely primarily on their hindlimbs for terrestrial locomotion. Although they perform flapping flight, they appear to use maximal power during descent and thus may lack control for maneuvering and avoiding injuries on landing. This in turn may result in injury in open rearing systems. Wing-assisted incline running (WAIR) requires a bird to use its wings to assist the hindlimbs during climbing of an incline, and training in WAIR may therefore provide a useful method to increase a hen's power reserve and control for flight. We subjected hens to an exercise regimen involving inclines to induce WAIR for 16 wk during rearing. We then measured wing and body kinematics during aerial descent from a 155 cm platform. We hypothesized that birds reared with exercise would be better able to modulate their wing and body kinematics for making slower, more-controlled descent and landing. Brown-feathered birds exhibited greater wing beat frequencies than white-feathered birds, which is consistent with the higher wing loading of brown-feathered birds and WAIR-trained birds exhibited greater initial flight velocities compared to control birds. This may indicate that WAIR training provided an improved capacity to modulate flight velocity and strengthen the leg muscles. Providing incline exercises during rearing may therefore improve welfare for adult laying hens as greater initial flight velocity should reduce the power required for supporting body weight in the air and allow a hen to direct her excess power toward maneuvering.


Assuntos
Galinhas , Corrida , Animais , Feminino , Locomoção , Peso Corporal , Plumas
11.
R Soc Open Sci ; 10(1): 220809, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704252

RESUMO

Domestic chickens may live in environments which restrict wing muscle usage. Notably, reduced wing activity and accompanying muscle weakness are hypothesized risk factors for keel bone fractures and deviations. We used radio-frequency identification (RFID) to measure duration spent at elevated resources (feeders, nest-boxes), ultrasonography to measure muscle thickness (breast and lower leg) changes, radiography and palpation to determine fractures and deviations, respectively, following no, partial (one-sided wing sling) and full (cage) immobilization in white- and brown-feathered birds. We hypothesized partially immobilized hens would reduce elevated resource usage and that both immobilization groups would show decreased pectoralis thickness (disuse) and increased prevalence of fractures and deviations. Elevated nest-box usage was 42% lower following five weeks of partial immobilization for brown-feathered hens but no change in resource usage in white-feathered birds was observed. Fully immobilized, white-feathered hens showed a 17% reduction in pectoralis thickness, while the brown-feathered counterparts showed no change. Lastly, fractures and deviations were not affected in either strain or form of wing immobilization; however, overall low numbers of birds presented with these issues. Altogether, this study shows a profound difference between white- and brown-feathered hens in response to wing immobilization and associated muscle physiology.

12.
R Soc Open Sci ; 10(11): 230817, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034124

RESUMO

In flying birds, the pectoralis (PECT) and supracoracoideus (SUPRA) generate most of the power required for flight, while the wing feathers create the aerodynamic forces. However, in domestic laying hens, little is known about the architectural properties of these muscles and the forces the wings produce. As housing space increases for commercial laying hens, understanding these properties is important for assuring safe locomotion. We tested the effects of wing area loss on mass, physiological cross-sectional area (PCSA), and estimated muscle stress (EMS) of the PECT and SUPRA in white-feathered laying hens. Treatments included Unclipped (N = 18), Half-Clipped with primaries removed (N = 18) and Fully-Clipped with the primaries and secondaries removed (N = 18). The mass and PCSA of the PECT and SUPRA did not vary significantly with treatment. Thus, laying hen muscle anatomy may be relatively resistant to changes in external wing morphology. We observed significant differences in EMS among treatments, as Unclipped birds exhibited the greatest EMS. This suggests that intact wings provide the greatest stimulus of external force for the primary flight muscles.

13.
Artigo em Inglês | MEDLINE | ID: mdl-22123217

RESUMO

Hummingbirds represent an end point for small body size and water flux in vertebrates. We explored the role evaporative water loss (EWL) plays in management of their large water pool and its use in dissipating metabolic heat. We measured respiratory evaporative water loss (REWL) in hovering hummingbirds in the field (6 species) and over a range of speeds in a wind tunnel (1 species) using an open-circuit mask respirometry system. Hovering REWL during the active period was positively correlated with operative temperature (T(e)) likely due to some combination of an increase in the vapor-pressure deficit, increase in lung ventilation rate, and reduced importance of dry heat transfer at higher T(e). In rufous hummingbirds (Selasphorus rufus; 3.3g) REWL during forward flight at 6 and 10 m/s was less than half the value for hovering. The proportion of total dissipated heat (TDH) accounted for by REWL during hovering at T(e)> 40°C was <40% in most species. During forward flight in S. rufus the proportion of TDH accounted for by REWL was ~35% less than for hovering. REWL in hummingbirds is a relatively small component of the water budget compared with other bird species (<20%) so cutaneous evaporative water loss and dry heat transfer must contribute significantly to thermal balance in hummingbirds.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Respiração , Perda Insensível de Água/fisiologia , Animais , Arizona , Aves/genética , Temperatura Corporal/fisiologia , Peso Corporal/fisiologia , Temperatura Alta , Modelos Lineares , Filogenia , Água/fisiologia , Vento
14.
R Soc Open Sci ; 9(6): 220155, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35719889

RESUMO

Feather loss in domestic chickens can occur due to wear and tear, disease or bird-to-bird pecking. Flight feather loss may decrease wing use, cause pectoral muscle loss and adversely impact the keel bone to which these muscles anchor. Feather loss and muscle weakness are hypothesized risk factors for keel bone fractures that are reported in up to 98% of chickens. We used ultrasound to measure changes in pectoral muscle thickness and X-rays to assess keel bone fracture prevalence following symmetric clipping of primary and secondary feathers in white- and brown-feathered birds. Four and six weeks after flight feather clipping, pectoralis thickness decreased by approximately 5%, while lower leg thickness increased by approximately 5% in white-feathered birds. This pectoralis thickness decrease may reflect wing disuse followed by muscle atrophy, while the increased leg thickness may reflect increased bipedal locomotion. The lack of effect on muscle thickness in brown-feathered hens was probably due to their decreased tendency for aerial locomotion. Finally, pectoralis thickness was not associated with keel bone fractures in either white- or brown-feathered birds. This suggests that the white-feathered strain was more sensitive to feather loss. Future prevention strategies should focus on birds most susceptible to muscle loss associated with flight feather damage.

15.
R Soc Open Sci ; 9(3): 211561, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35316951

RESUMO

Ground-dwelling species of birds, such as domestic chickens (Gallus gallus domesticus), experience difficulties sustaining flight due to high wing loading. This limited flight ability may be exacerbated by loss of flight feathers that is prevalent among egg-laying chickens. Despite this, chickens housed in aviary style systems need to use flight to access essential resources stacked in vertical tiers. To understand the impact of flight feather loss on chickens' ability to access elevated resources, we clipped primary and secondary flight feathers for two hen strains (brown-feathered and white-feathered, n = 120), and recorded the time hens spent at elevated resources (feeders, nest-boxes). Results showed that flight feather clipping significantly reduced the percentage of time that hens spent at elevated resources compared to ground resources. When clipping both primary and secondary flight feathers, all hens exhibited greater than or equal to 38% reduction in time spent at elevated resources. When clipping only primary flight feathers, brown-feathered hens saw a greater than 50% reduction in time spent at elevated nest-boxes. Additionally, brown-feathered hens scarcely used the elevated feeder regardless of treatment. Clipping of flight feathers altered the amount of time hens spent at elevated resources, highlighting that distribution and accessibility of resources is an important consideration in commercial housing.

16.
Nature ; 435(7045): 1094-7, 2005 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15973407

RESUMO

Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either explicitly or implicitly, in widely used aerodynamic models and in a variety of empirical tests. Here we provide measurements of the wake of hovering rufous hummingbirds (Selasphorus rufus) obtained with digital particle image velocimetry that show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke. Some of this asymmetry is probably due to inversion of their cambered wings during upstroke. The wake of hummingbird wings also reveals evidence of leading-edge vortices created during the downstroke, indicating that they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering. Hummingbird hovering approaches that of insects, yet remains distinct because of effects resulting from an inherently dissimilar-avian-body plan.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Asas de Animais/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Aves/anatomia & histologia , Peso Corporal , Insetos/fisiologia , Modelos Biológicos , Asas de Animais/anatomia & histologia
17.
R Soc Open Sci ; 8(7): 210196, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34350016

RESUMO

Wild birds modulate wing and whole-body kinematics to adjust their flight patterns and trajectories when wing loading increases flight power requirements. Domestic chickens (Gallus gallus domesticus) in backyards and farms exhibit feather loss, naturally high wing loading, and limited flight capabilities. Yet, housing chickens in aviaries requires birds to navigate three-dimensional spaces to access resources. To understand the impact of feather loss on laying hens' flight capabilities, we symmetrically clipped the primary and secondary feathers before measuring wing and whole-body kinematics during descent from a 1.5 m platform. We expected birds to compensate for increased wing loading by increasing wingbeat frequency, amplitude and angular velocity. Otherwise, we expected to observe an increase in descent velocity and angle and an increase in vertical acceleration. Feather clipping had a significant effect on descent velocity, descent angle and horizontal acceleration. Half-clipped hens had lower descent velocity and angle than full-clipped hens, and unclipped hens had the highest horizontal acceleration. All hens landed with a velocity two to three times greater than in bird species that are adept fliers. Our results suggest that intact laying hens operate at the maximal power output supported by their anatomy and are at the limit of their ability to control flight trajectory.

19.
J Exp Biol ; 213(Pt 14): 2515-23, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20581281

RESUMO

Hummingbirds have the smallest body size and highest wingbeat frequencies of all flying vertebrates, so they represent one endpoint for evaluating the effects of body size on sustained muscle function and flight performance. Other bird species vary neuromuscular recruitment and contractile behavior to accomplish flight over a wide range of speeds, typically exhibiting a U-shaped curve with maxima at the slowest and fastest flight speeds. To test whether the high wingbeat frequencies and aerodynamically active upstroke of hummingbirds lead to different patterns, we flew rufous hummingbirds (Selasphorus rufus, 3 g body mass, 42 Hz wingbeat frequency) in a variable-speed wind tunnel (0-10 m s(-1)). We measured neuromuscular activity in the pectoralis (PECT) and supracoracoideus (SUPRA) muscles using electromyography (EMG, N=4 birds), and we measured changes in PECT length using sonomicrometry (N=1). Differing markedly from the pattern in other birds, PECT deactivation occurred before the start of downstroke and the SUPRA was deactivated before the start of upstroke. The relative amplitude of EMG signal in the PECT and SUPRA varied according to a U-shaped curve with flight speed; additionally, the onset of SUPRA activity became relatively later in the wingbeat at intermediate flight speeds (4 and 6 m s(-1)). Variation in the relative amplitude of EMG was comparable with that observed in other birds but the timing of muscle activity was different. These data indicate the high wingbeat frequency of hummingbirds limits the time available for flight muscle relaxation before the next half stroke of a wingbeat. Unlike in a previous study that reported single-twitch EMG signals in the PECT of hovering hummingbirds, across all flight speeds we observed 2.9+/-0.8 spikes per contraction in the PECT and 3.8+/-0.8 spikes per contraction in the SUPRA. Muscle strain in the PECT was 10.8+/-0.5%, the lowest reported for a flying bird, and average strain rate was 7.4+/-0.2 muscle lengths s(-1). Among species of birds, PECT strain scales proportional to body mass to the 0.2 power (infinityM(b)(0.2)) using species data and infinityM(b)(0.3) using independent contrasts. This positive scaling is probably a physiological response to an adverse scaling of mass-specific power available for flight.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Músculos Peitorais/fisiologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Aves/anatomia & histologia , Eletromiografia , Feminino , Contração Muscular/fisiologia , Periodicidade
20.
Proc Biol Sci ; 276(1674): 3747-52, 2009 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19656789

RESUMO

Aerodynamic theory and empirical observations of animals flying at similar Reynolds numbers (Re) predict that airflow over hummingbird wings will be dominated by a stable, attached leading edge vortex (LEV). In insects exhibiting similar kinematics, when the translational movement of the wing ceases (as at the end of the downstroke), the LEV is shed and lift production decreases until the energy of the LEV is re-captured in the subsequent half-cycle translation. We here show that while the hummingbird wing is strongly influenced by similar sharp-leading-edge aerodynamics, leading edge vorticity is inconsistent, varying from 0.7 to 26 per cent (mean 16%) of total lift production, is always generated within 3 mm of the dorsal surface of the wing, showing no retrograde (trailing to leading edge) flow, and does not increase from proximal to distal wing as would be expected with a conical vortex (class III LEV) described for hawkmoths. Further, the bound circulation is not shed as a vortex at the end of translation, but instead remains attached and persists after translation has ceased, augmented by the rotation (pronation, supination) of the wing that occurs between the wing-translation half-cycles. The result is a near-continuous lift production through wing turn-around, previously unknown in vertebrates, able to contribute to weight support as well as stability and control during hovering. Selection for a planform suited to creating this unique flow and nearly-uninterrupted lift production throughout the wingbeat cycle may help explain the relatively narrow hummingbird wing.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA