Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180085

RESUMO

Host tissues represent diverse resources or barriers for pathogen replicative fitness. We tested whether viruses in specialist, generalist, and non-specialist interactions replicate differently in local entry tissue (fin), and systemic target tissue (kidney) using infectious hematopoietic necrosis virus (IHNV) and three salmonid fish hosts. Virus tissue replication was host specific, but one feature was shared by specialists and the generalist which was uncommon in the non-specialist interactions: high host entry and replication capacity in the local tissue after contact. Moreover, specialists showed increased replication in systemic target tissues early after host contact. By comparing ancestral and derived IHNV viruses, we also characterized replication tradeoffs associated with specialist and generalist evolution. Compared with the ancestral virus, a derived specialist gained early local replicative fitness in the new host but lost replicative fitness in the ancestral host. By contrast, a derived generalist showed small replication losses relative to the ancestral virus in the ancestral host but increased early replication in the local tissue of novel hosts. This study shows that the mechanisms of specialism and generalism are host specific and that local and systemic replication can contribute differently to overall within host replicative fitness for specialist and generalist viruses.


Assuntos
Salmonidae , Animais , Especialização , Rim , Replicação Viral
2.
J Biol Chem ; 298(7): 102127, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35709986

RESUMO

The evolution of multidrug resistance in Acinetobacter spp. increases the risk of our best antibiotics losing their efficacy. From a clinical perspective, the carbapenem-hydrolyzing class D ß-lactamase subfamily present in Acinetobacter spp. is particularly concerning because of its ability to confer resistance to carbapenems. The kinetic profiles of class D ß-lactamases exhibit variability in carbapenem hydrolysis, suggesting functional differences. To better understand the structure-function relationship between the carbapenem-hydrolyzing class D ß-lactamase OXA-24/40 found in Acinetobacter baumannii and carbapenem substrates, we analyzed steady-state kinetics with the carbapenem antibiotics meropenem and ertapenem and determined the structures of complexes of OXA-24/40 bound to imipenem, meropenem, doripenem, and ertapenem, as well as the expanded-spectrum cephalosporin cefotaxime, using X-ray crystallography. We show that OXA-24/40 exhibits a preference for ertapenem compared with meropenem, imipenem, and doripenem, with an increase in catalytic efficiency of up to fourfold. We suggest that superposition of the nine OXA-24/40 complexes will better inform future inhibitor design efforts by providing insight into the complicated and varying ways in which carbapenems are selected and bound by class D ß-lactamases.


Assuntos
Proteínas de Bactérias , Carbapenêmicos , beta-Lactamases , Acinetobacter baumannii/enzimologia , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carbapenêmicos/química , Carbapenêmicos/metabolismo , Hidrólise , Testes de Sensibilidade Microbiana , Conformação Proteica , Especificidade por Substrato , beta-Lactamases/química , beta-Lactamases/metabolismo
3.
Dis Aquat Organ ; 150: 61-67, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35833545

RESUMO

In recent decades, evidence has accumulated to suggest that the widespread and highly variable parasite Ichthyophonus hoferi is actually a species complex. Highly plastic morphology and a general lack of defining structures has contributed to the likely underestimate of biodiversity within this group. Molecular methods are a logical next step in the description of these parasites, but markers used to date have been too conserved to resolve species boundaries. Here we use mitochondrial encoded cytochrome-c oxidase (MTCO1) gene sequences and phylogenic analysis to compare Ichthyophonus spp. isolates from several marine and anadromous fish hosts. The resulting phylogeny displays lineage separation among isolates and possible host/niche segregation not previously described. The parasite type that infects Pacific herring Clupea pallasii, Atlantic herring C. harengus, Atlantic salmon Salmo salar, and Pacific staghorn sculpin Oligocottus maculosus (Clade A) is different from that which infects Chinook salmon Oncorhynchus tshawytscha, walleye pollock Gadus chalcogrammus, Greenland halibut Reinhardtius hippoglossoides, and Pacific halibut Hippoglossus stenolepsis (Clade B). MTCO1 sequences confirmed the presence of a more divergent Ichthyophonus sp. isolated from American shad Alosa sapidissima in rivers of eastern North America (Clade C), while American shad introduced to the Pacific Ocean are infected with the same parasite that infects Pacific herring (Clade A). Currently there are no consensus criteria for delimiting species within Ichthyophonidae, but MTCO1 sequences hold promise as a potential species identifying marker and useful epizootiological tool.


Assuntos
Doenças dos Peixes , Gadiformes , Mesomycetozoea , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Peixes , Genótipo , Mesomycetozoea/genética , Oceano Pacífico , Filogenia , Salmão
4.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32988830

RESUMO

Extended-spectrum class C ß-lactamases have evolved to rapidly inactivate expanded-spectrum cephalosporins, a class of antibiotics designed to be resistant to hydrolysis by ß-lactamase enzymes. To better understand the mechanism by which Acinetobacter-derived cephalosporinase-7 (ADC-7), a chromosomal AmpC enzyme, hydrolyzes these molecules, we determined the X-ray crystal structure of ADC-7 in an acyl-enzyme complex with the cephalosporin ceftazidime (2.40 Å) as well as in complex with a boronic acid transition state analog inhibitor that contains the R1 side chain of ceftazidime (1.67 Å). In the acyl-enzyme complex, the carbonyl oxygen is situated in the oxyanion hole where it makes key stabilizing interactions with the main chain nitrogens of Ser64 and Ser315. The boronic acid O1 hydroxyl group is similarly positioned in this area. Conserved residues Gln120 and Asn152 form hydrogen bonds with the amide group of the R1 side chain in both complexes. These complexes represent two steps in the hydrolysis of expanded-spectrum cephalosporins by ADC-7 and offer insight into the inhibition of ADC-7 by ceftazidime through displacement of the deacylating water molecule as well as blocking its trajectory to the acyl carbonyl carbon. In addition, the transition state analog inhibitor, LP06, was shown to bind with high affinity to ADC-7 (Ki , 50 nM) and was able to restore ceftazidime susceptibility, offering the potential for optimization efforts of this type of inhibitor.


Assuntos
Acinetobacter , Ácidos Borônicos , Ceftazidima , Cefalosporinase , Antibacterianos/farmacologia , Ácidos Borônicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinase/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases
5.
J Fish Dis ; 43(7): 719-728, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32476167

RESUMO

Piscine orthoreovirus genotype 1 (PRV-1) is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar L.). The virus has also been found in Pacific salmonids in western North America, raising concerns about the risk to native salmon and trout. Here, we report the results of laboratory challenges using juvenile Chinook salmon, coho salmon and rainbow trout injected with tissue homogenates from Atlantic salmon testing positive for PRV-1 or with control material. Fish were sampled at intervals to assess viral RNA transcript levels, haematocrit, erythrocytic inclusions and histopathology. While PRV-1 replicated in all species, there was negligible mortality in any group. We observed a few erythrocytic inclusion bodies in fish from the PRV-1-infected groups. At a few time points, haematocrits were significantly lower in the PRV-1-infected groups relative to controls, but in no case was anaemia noted. The most common histopathological finding was mild, focal myocarditis in both the non-infected controls and PRV-1-infected fish. All cardiac lesions were judged mild, and none were consistent with those of HSMI. Together, these results suggest all three species are susceptible to PRV-1 infection, but in no case did infection cause notable disease in these experiments.


Assuntos
Doenças dos Peixes/virologia , Genótipo , Hematócrito/veterinária , Corpos de Inclusão Viral/fisiologia , Oncorhynchus , Orthoreovirus/fisiologia , Infecções por Reoviridae/veterinária , Animais , Oncorhynchus kisutch , Oncorhynchus mykiss , Orthoreovirus/genética , RNA Viral/análise , Infecções por Reoviridae/virologia
6.
Biochem J ; 475(1): 273-288, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29229762

RESUMO

OXA-239 is a class D carbapenemase isolated from an Acinetobacter baumannii strain found in Mexico. This enzyme is a variant of OXA-23 with three amino acid substitutions in or near the active site. These substitutions cause OXA-239 to hydrolyze late-generation cephalosporins and the monobactam aztreonam with greater efficiency than OXA-23. OXA-239 activity against the carbapenems doripenem and imipenem is reduced ∼3-fold and 20-fold, respectively. Further analysis demonstrated that two of the substitutions (P225S and D222N) are largely responsible for the observed alteration of kinetic parameters, while the third (S109L) may serve to stabilize the protein. Structures of OXA-239 with cefotaxime, doripenem and imipenem bound as acyl-intermediates were determined. These structures reveal that OXA-239 has increased flexibility in a loop that contains P225S and D222N. When carbapenems are bound, the conformation of this loop is essentially identical with that observed previously for OXA-23, with a narrow active site that makes extensive contacts to the ligand. When cefotaxime is bound, the loop can adopt a different conformation that widens the active site to allow binding of that bulky drug. This alternate conformation is made possible by P225S and further stabilized by D222N. Taken together, these results suggest that the three substitutions were selected to expand the substrate specificity profile of OXA-23 to cephalosporins and monobactams. The loss of activity against imipenem, however, suggests that there may be limits to the plasticity of class D enzymes with regard to evolving active sites that can effectively bind multiple classes of ß-lactam drugs.


Assuntos
Acinetobacter baumannii/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/química , Carbapenêmicos/química , Cefotaxima/química , Imipenem/química , beta-Lactamases/química , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbapenêmicos/metabolismo , Carbapenêmicos/farmacologia , Domínio Catalítico , Cefotaxima/metabolismo , Cefotaxima/farmacologia , Clonagem Molecular , Cristalografia por Raios X , Doripenem , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Imipenem/metabolismo , Imipenem/farmacologia , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , beta-Lactamases/genética , beta-Lactamases/metabolismo
7.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27903801

RESUMO

Many enveloped viruses cause devastating disease in aquaculture, resulting in significant economic impact. LJ001 is a broad-spectrum antiviral compound that inhibits enveloped virus infections by specifically targeting phospholipids in the lipid bilayer via the production of singlet oxygen (1O2). This stabilizes positive curvature and decreases membrane fluidity, which inhibits virus-cell membrane fusion during viral entry. Based on data from previous mammalian studies and the requirement of light for the activation of LJ001, we hypothesized that LJ001 may be useful as a preventative and/or therapeutic agent for infections by enveloped viruses in aquaculture. Here, we report that LJ001 was more stable with a prolonged inhibitory half-life at relevant aquaculture temperatures (15°C), than in mammalian studies at 37°C. When LJ001 was preincubated with our model virus, infectious hematopoietic necrosis virus (IHNV), infectivity was significantly inhibited in vitro (using the epithelioma papulosum cyprini [EPC] fish cell line) and in vivo (using rainbow trout fry) in a dose-dependent and time-dependent manner. While horizontal transmission of IHNV in a static cohabitation challenge model was reduced by LJ001, transmission was not completely blocked at established antiviral doses. Therefore, LJ001 may be best suited as a therapeutic for aquaculture settings that include viral infections with lower virus-shedding rates than IHNV or where higher viral titers are required to initiate infection of naive fish. Importantly, our data also suggest that LJ001-inactivated IHNV elicited an innate immune response in the rainbow trout host, making LJ001 potentially useful for future vaccination approaches. IMPORTANCE: Viral diseases in aquaculture are challenging because there are few preventative measures and/or treatments. Broad-spectrum antivirals are highly sought after and studied because they target common components of viruses. In our studies, we used LJ001, a broad-spectrum antiviral compound that specifically inhibits enveloped viruses. We used the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV) as a model to study aquatic enveloped virus diseases and their inhibition. We demonstrated inhibition of IHNV by LJ001 both in cell culture as well as in live fish. Additionally, we showed that LJ001 inhibited the transmission of IHNV from infected fish to healthy fish, which lays the groundwork for using LJ001 as a possible therapeutic for aquatic viruses. Our results also suggest that virus inactivated by LJ001 induces an immune response, showing potential for future preventative (e.g., vaccine) applications.


Assuntos
Antivirais/farmacologia , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/virologia , Rhabdoviridae/efeitos dos fármacos , Animais , Aquicultura , Relação Dose-Resposta a Droga , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/genética , Doenças dos Peixes/transmissão , Regulação da Expressão Gênica/efeitos dos fármacos , Infecções por Rhabdoviridae/tratamento farmacológico , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/transmissão
8.
J Aquat Anim Health ; 29(4): 189-198, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28806149

RESUMO

We report the development and validation of two quantitative PCR (qPCR) assays to detect Nanophyetus salmincola DNA in water samples and in fish and snail tissues. Analytical and diagnostic validation demonstrated good sensitivity, specificity, and repeatability of both qPCR assays. The N. salmincola DNA copy number in kidney tissue was significantly correlated with metacercaria counts based on microscopy. Extraction methods were optimized for the sensitive qPCR detection of N. salmincola DNA in settled water samples. Artificially spiked samples suggested that the 1-cercaria/L threshold corresponded to an estimated log10 copies per liter ≥ 6.0. Significant correlation of DNA copy number per liter and microscopic counts indicated that the estimated qPCR copy number was a good predictor of the number of waterborne cercariae. However, the detection of real-world samples below the estimated 1-cercaria/L threshold suggests that the assays may also detect other N. salmincola life stages, nonintact cercariae, or free DNA that settles with the debris. In summary, the qPCR assays reported here are suitable for identifying and quantifying all life stages of N. salmincola that occur in fish tissues, snail tissues, and water. Received April 13, 2017; accepted August 6, 2017.


Assuntos
Peixes/parasitologia , Caramujos/parasitologia , Trematódeos/isolamento & purificação , Água/parasitologia , Animais , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Trematódeos/genética
9.
J Aquat Anim Health ; 29(2): 74-82, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28375717

RESUMO

Methods for a plaque neutralization test (PNT) were optimized for the detection and quantification of viral hemorrhagic septicemia virus (VHSV) neutralizing activity in the plasma of Pacific Herring Clupea pallasii. The PNT was complement dependent, as neutralizing activity was attenuated by heat inactivation; further, neutralizing activity was mostly restored by the addition of exogenous complement from specific-pathogen-free Pacific Herring. Optimal methods included the overnight incubation of VHSV aliquots in serial dilutions (starting at 1:16) of whole test plasma containing endogenous complement. The resulting viral titers were then enumerated using a viral plaque assay in 96-well microplates. Serum neutralizing activity was virus-specific as plasma from viral hemorrhagic septicemia (VHS) survivors demonstrated only negligible reactivity to infectious hematopoietic necrosis virus, a closely related rhabdovirus. Among Pacific Herring that survived VHSV exposure, neutralizing activity was detected in the plasma as early as 37 d postexposure and peaked at approximately 64 d postexposure. The onset of neutralizing activity was slightly delayed in fish reared at 7.4°C relative to those in warmer temperatures (9.9°C and 13.1°C); however, neutralizing activity persisted for at least 345 d postexposure in all temperature treatments. It is anticipated that this novel ability to assess VHSV neutralizing activity in Pacific Herring will enable retrospective comparisons between prior VHS infections and year-class recruitment failures. Additionally, the optimized PNT could be employed as a forecasting tool capable of identifying the potential for future VHS epizootics in wild Pacific Herring populations. Received November 7, 2016; accepted January 14, 2017.


Assuntos
Doenças dos Peixes/diagnóstico , Septicemia Hemorrágica Viral/diagnóstico , Testes de Neutralização/veterinária , Novirhabdovirus/isolamento & purificação , Animais , Peixes , Estudos Retrospectivos
10.
Dis Aquat Organ ; 120(2): 125-41, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27409236

RESUMO

Despite their widespread, global impact in both wild and cultured fishes, little is known of the diversity, transmission patterns, and phylogeography of parasites generally identified as Ichthyophonus. This study constructed a phylogeny based on the structural alignment of internal transcribed spacer (ITS) rDNA sequences to compare Ichthyophonus isolates from fish hosts in the Atlantic and Pacific oceans, and several rivers and aquaculture sites in North America, Europe, and Japan. Structure of the Ichthyophonus ITS1-5.8S-ITS2 transcript exhibited several homologies with other eukaryotes, and 6 distinct clades were identified within Ichthyophonus. A single clade contained a majority (71 of 98) of parasite isolations. This ubiquitous Ichthyophonus type occurred in 13 marine and anadromous hosts and was associated with epizootics in Atlantic herring, Chinook salmon, and American shad. A second clade contained all isolates from aquaculture, despite great geographic separation of the freshwater hosts. Each of the 4 remaining clades contained isolates from single host species. This study is the first to evaluate the genetic relationships among Ichthyophonus species across a significant portion of their host and geographic range. Additionally, parasite infection prevalence is reported in 16 fish species.


Assuntos
DNA Espaçador Ribossômico/genética , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Mesomycetozoea/genética , Filogenia , Animais , Especificidade de Hospedeiro , Especificidade da Espécie
11.
Biochemistry ; 54(10): 1976-87, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25710192

RESUMO

The carbapenem-hydrolyzing class D ß-lactamases OXA-23 and OXA-24/40 have emerged worldwide as causative agents for ß-lactam antibiotic resistance in Acinetobacter species. Many variants of these enzymes have appeared clinically, including OXA-160 and OXA-225, which both contain a P → S substitution at homologous positions in the OXA-24/40 and OXA-23 backgrounds, respectively. We purified OXA-160 and OXA-225 and used steady-state kinetic analysis to compare the substrate profiles of these variants to their parental enzymes, OXA-24/40 and OXA-23. OXA-160 and OXA-225 possess greatly enhanced hydrolytic activities against aztreonam, ceftazidime, cefotaxime, and ceftriaxone when compared to OXA-24/40 and OXA-23. These enhanced activities are the result of much lower Km values, suggesting that the P → S substitution enhances the binding affinity of these drugs. We have determined the structures of the acylated forms of OXA-160 (with ceftazidime and aztreonam) and OXA-225 (ceftazidime). These structures show that the R1 oxyimino side-chain of these drugs occupies a space near the ß5-ß6 loop and the omega loop of the enzymes. The P → S substitution found in OXA-160 and OXA-225 results in a deviation of the ß5-ß6 loop, relieving the steric clash with the R1 side-chain carboxypropyl group of aztreonam and ceftazidime. These results reveal worrying trends in the enhancement of substrate spectrum of class D ß-lactamases but may also provide a map for ß-lactam improvement.


Assuntos
Acinetobacter baumannii/enzimologia , Aztreonam/química , Proteínas de Bactérias/química , Cefalosporinas/química , beta-Lactamases/química , Hidrólise , Cinética , Estrutura Secundária de Proteína
12.
Biochemistry ; 53(48): 7670-9, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25380506

RESUMO

ß-Lactam resistance in Acinetobacter baumannii presents one of the greatest challenges to contemporary antimicrobial chemotherapy. Much of this resistance to cephalosporins derives from the expression of the class C ß-lactamase enzymes, known as Acinetobacter-derived cephalosporinases (ADCs). Currently, ß-lactamase inhibitors are structurally similar to ß-lactam substrates and are not effective inactivators of this class C cephalosporinase. Herein, two boronic acid transition state inhibitors (BATSIs S02030 and SM23) that are chemically distinct from ß-lactams were designed and tested for inhibition of ADC enzymes. BATSIs SM23 and S02030 bind with high affinity to ADC-7, a chromosomal cephalosporinase from Acinetobacter baumannii (Ki = 21.1 ± 1.9 nM and 44.5 ± 2.2 nM, respectively). The X-ray crystal structures of ADC-7 were determined in both the apo form (1.73 Å resolution) and in complex with S02030 (2.0 Å resolution). In the complex, S02030 makes several canonical interactions: the O1 oxygen of S02030 is bound in the oxyanion hole, and the R1 amide group makes key interactions with conserved residues Asn152 and Gln120. In addition, the carboxylate group of the inhibitor is meant to mimic the C3/C4 carboxylate found in ß-lactams. The C3/C4 carboxylate recognition site in class C enzymes is comprised of Asn346 and Arg349 (AmpC numbering), and these residues are conserved in ADC-7. Interestingly, in the ADC-7/S02030 complex, the inhibitor carboxylate group is observed to interact with Arg340, a residue that distinguishes ADC-7 from the related class C enzyme AmpC. A thermodynamic analysis suggests that ΔH driven compounds may be optimized to generate new lead agents. The ADC-7/BATSI complex provides insight into recognition of non-ß-lactam inhibitors by ADC enzymes and offers a starting point for the structure-based optimization of this class of novel ß-lactamase inhibitors against a key resistance target.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Cefalosporinase/química , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Fenômenos Biofísicos , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Domínio Catalítico , Cefalosporinase/genética , Cristalografia por Raios X , Desenho de Fármacos , Cinética , Modelos Moleculares , Estrutura Molecular , Eletricidade Estática , Termodinâmica , Resistência beta-Lactâmica/genética
13.
Antimicrob Agents Chemother ; 58(1): 333-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24165180

RESUMO

Since the discovery and use of penicillin, the increase of antibiotic resistance among bacterial pathogens has become a major health concern. The most prevalent resistance mechanism in Gram-negative bacteria is due to ß-lactamase expression. Class D ß-lactamases are of particular importance due to their presence in multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. The class D enzymes were initially characterized by their ability to efficiently hydrolyze isoxazolyl-type ß-lactams like oxacillin. Due to this substrate preference, these enzymes are traditionally referred to as oxacillinases or OXAs. However, this class is comprised of subfamilies characterized by diverse activities that include oxacillinase, carbapenemase, or cephalosporinase substrate specificity. OXA-1 represents one subtype of class D enzyme that efficiently hydrolyzes oxacillin, and OXA-24/40 represents another with weak oxacillinase, but increased carbapenemase, activity. To examine the structural basis for the substrate selectivity differences between OXA-1 and OXA-24/40, the X-ray crystal structures of deacylation-deficient mutants of these enzymes (Lys70Asp for OXA-1; Lys84Asp for OXA-24) in complexes with oxacillin were determined to 1.4 Å and 2.4 Å, respectively. In the OXA-24/40/oxacillin structure, the hydrophobic R1 side chain of oxacillin disrupts the bridge between Tyr112 and Met223 present in the apo OXA-24/40 structure, causing the main chain of the Met223-containing loop to adopt a completely different conformation. In contrast, in the OXA-1/oxacillin structure, a hydrophobic pocket consisting of Trp102, Met99, Phe217, Leu161, and Leu255 nicely complements oxacillin's nonpolar R1 side chain. Comparison of the OXA-1/oxacillin and OXA-24/40/oxacillin complexes provides novel insight on how substrate selectivity is achieved among subtypes of class D ß-lactamases. By elucidating important active site interactions, these findings can also inform the design of novel antibiotics and inhibitors.


Assuntos
beta-Lactamases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cefalosporinase/química , Cefalosporinase/metabolismo , Cristalografia por Raios X , Oxacilina/metabolismo , Especificidade por Substrato , beta-Lactamases/química
14.
Acc Chem Res ; 46(11): 2407-15, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23902256

RESUMO

Despite 70 years of clinical use, ß-lactam antibiotics still remain at the forefront of antimicrobial chemotherapy. The major challenge to these life-saving therapeutics is the presence of bacterial enzymes (i.e., ß-lactamases) that can hydrolyze the ß-lactam bond and inactivate the antibiotic. These enzymes can be grouped into four classes (A-D). Among the most genetically diverse are the class D ß-lactamases. In this class are ß-lactamases that can inactivate the entire spectrum of ß-lactam antibiotics (penicillins, cephalosporins, and carbapenems). Class D ß-lactamases are mostly found in Gram-negative bacteria such as Pseudomonas aeruginosa , Escherichia coli , Proteus mirabilis , and Acinetobacter baumannii . The active-sites of class D ß-lactamases contain an unusual N-carboxylated lysine post-translational modification. A strongly hydrophobic active-site helps create the conditions that allow the lysine to combine with CO2, and the resulting carbamate is stabilized by a number of hydrogen bonds. The carboxy-lysine plays a symmetric role in the reaction, serving as a general base to activate the serine nucleophile in the acylation reaction, and the deacylating water in the second step. There are more than 250 class D ß-lactamases described, and the full set of variants shows remarkable diversity with regard to substrate binding and turnover. Narrow-spectrum variants are most effective against the earliest generation penicillins and cephalosporins such as ampicillin and cephalothin. Extended-spectrum variants (also known as extended-spectrum ß-lactamases, ESBLs) pose a more dangerous clinical threat as they possess a small number of substitutions that allow them to bind and hydrolyze later generation cephalosporins that contain bulkier side-chain constituents (e.g., cefotaxime, ceftazidime, and cefepime). Mutations that permit this versatility seem to cluster in the area surrounding an active-site tryptophan resulting in a widened active-site to accommodate the oxyimino side-chains of these cephalosporins. More concerning are the class D ß-lactamases that hydrolyze clinically important carbapenem ß-lactam drugs (e.g., imipenem). Whereas carbapenems irreversibly acylate and inhibit narrow-spectrum ß-lactamases, class D carbapenemases are able to recruit and activate a deacylating water. The rotational orientation of the C6 hydroxyethyl group found on all carbapenem antibiotics likely plays a role in whether the deacylating water is effective or not. Inhibition of class D ß-lactamases is a current challenge. Commercially available inhibitors that are active against other classes of ß-lactamases are ineffective against class D enzymes. On the horizon are several compounds, consisting of both ß-lactam derivatives and non-ß-lactams, that have the potential of providing novel leads to design new mechanism-based inactivators that are effective against the class D enzymes. Several act synergistically when given in combination with a ß-lactam antibiotic, and others show a unique mechanism of inhibition that is distinct from the traditional ß-lactamase inhibitors. These studies will bolster structure-based inhibitor design efforts to facilitate the optimization and development of these compounds as class D inactivators.


Assuntos
Bactérias Gram-Negativas/enzimologia , beta-Lactamases/metabolismo , Catálise , Domínio Catalítico , Modelos Moleculares
15.
Bioorg Med Chem ; 22(13): 3351-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24835785

RESUMO

ß-Lactams are the most widely prescribed class of antibiotics, yet their efficacy is threatened by expression of ß-lactamase enzymes, which hydrolyze the defining lactam ring of these antibiotics. To overcome resistance due to ß-lactamases, inhibitors that do not resemble ß-lactams are needed. A novel, non-ß-lactam inhibitor for the class C ß-lactamase AmpC (3-[(4-chloroanilino)sulfonyl]thiophene-2-carboxylic acid; Ki 26µM) was previously identified. Based on this lead, a series of compounds with the potential to interact with residues at the edge of the active site were synthesized and tested for inhibition of AmpC. The length of the carbon chain spacer was extended by 1, 2, 3, and 4 carbons between the integral thiophene ring and the benzene ring (compounds 4, 5, 6, and 7). Compounds 4 and 6 showed minimal improvement over the lead compound (Ki 18 and 19µM, respectively), and compound 5 inhibited to the same extent as the lead. The X-ray crystal structures of AmpC in complexes with compounds 4, 5, and 6 were determined. The complexes provide insight into the structural reasons for the observed inhibition, and inform future optimization efforts in this series.


Assuntos
Compostos de Anilina/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Tiofenos/farmacologia , Compostos de Anilina/síntese química , Compostos de Anilina/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , beta-Lactamases/metabolismo
16.
JAMA Netw Open ; 7(1): e2352440, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38277148

RESUMO

Importance: The number of active health care professionals has not kept pace with the increasing number of minoritized individuals in the US. The Summer Health Professions Education Program (SHPEP) was developed to alleviate this underrepresentation in the health workforce. Objective: To evaluate students' changes in perceived barriers and motivators for entering and succeeding in professional school after SHPEP participation. Design, Setting, and Participants: For this cohort study, anonymous electronic surveys were sent to the 2017 to 2021 SHPEP participants at an academic health center at a large university in the southern US. Participants were first- and second-year undergraduates interested in the health professions and enrolled in the SHPEP. Program participants were invited to complete the study. Exposures: An anonymous electronic survey was administered before and immediately after program completion. Main Outcomes and Measures: The SHPEP Career Barriers Survey (SCBS) is composed of 22 questions on motivators and 20 questions on barriers to entering and succeeding in health professional school. Students responded using a 5-point Likert scale, with 1 indicating strongly disagree and 5 indicating strongly agree. Mixed analysis of variance was used to analyze the program's latent factors. Results: Of all 402 SHPEP participants (mean [SD] age, 19.32 [0.88] years) from 2017 to 2021, 325 completed the preprogram survey and 259 also completed the postprogram survey. Of the 325 initial participants, 4 identified as American Indian or Alaska Native, Native Hawaiian, or Pacific Islander (1.2%); 12 as Asian (3.7%); 188 as Black (57.8%); 95 as Hispanic or Latino (29.2%); 7 as White (2.2%); and 16 as multiracial (4.9%). Two hundred twelve participants were female (65.2%), and 226 were first-generation college students (69.5%). Results of the SCBS indicate that the SHPEP had a significant small to moderate association on perceived motivators (mean [SD] x̅ = 84.60 [9.67] vs 80.95 [8.93]; P = .001) and decreases in perceived barriers (mean [SD] x̅ = 48.02 [13.20] vs 51.72 [11.39]; P = .008). There was no significant difference in program success between studied years. Conclusions and Relevance: In this cohort study, the SHPEP appeared to provide essential support for underrepresented students as measured by improved perceived motivators and reduced perceived barriers to entering professional education. Knowledge from this study can assist educators and health care professionals who wish to implement similar enrichment programs.


Assuntos
Pessoal de Saúde , Estudantes , Feminino , Humanos , Masculino , Adulto Jovem , Estudos de Coortes , Ocupações em Saúde , Pessoal de Saúde/educação
17.
J Mol Biol ; 436(12): 168603, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729259

RESUMO

OXA-66 is a member of the OXA-51 subfamily of class D ß-lactamases native to the Acinetobacter genus that includes Acinetobacter baumannii, one of the ESKAPE pathogens and a major cause of drug-resistant nosocomial infections. Although both wild type OXA-66 and OXA-51 have low catalytic activity, they are ubiquitous in the Acinetobacter genomes. OXA-51 is also remarkably thermostable. In addition, newly emerging, single and double amino acid variants show increased activity against carbapenems, indicating that the OXA-51 subfamily is growing and gaining clinical significance. In this study, we used molecular dynamics simulations, X-ray crystallography, and thermal denaturation data to examine and compare the dynamics of OXA-66 wt and its gain-of-function variants: I129L (OXA-83), L167V (OXA-82), P130Q (OXA-109), P130A, and W222L (OXA-234). Our data indicate that OXA-66 wt also has a high melting temperature, and its remarkable stability is due to an extensive and rigid hydrophobic bridge formed by a number of residues around the active site and harbored by the three loops, P, Ω, and ß5-ß6. Compared to the WT enzyme, the mutants exhibit higher flexibility only in the loop regions, and are more stable than other robust carbapenemases, such as OXA-23 and OXA-24/40. All the mutants show increased rotational flexibility of residues I129 and W222, which allows carbapenems to bind. Overall, our data support the hypothesis that structural features in OXA-51 and OXA-66 promote evolution of multiple highly stable variants with increased clinical relevance in A. baumannii.


Assuntos
Acinetobacter baumannii , Simulação de Dinâmica Molecular , beta-Lactamases , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimologia , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo , Cristalografia por Raios X , Estabilidade Enzimática , Conformação Proteica , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Evolução Molecular , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico
18.
JMIR Hum Factors ; 11: e54117, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042889

RESUMO

BACKGROUND: Digital adherence technologies (DATs) are being studied to determine their potential to support tuberculosis (TB) treatment and address the shortcomings of directly observed therapy. Previous research has shown inconclusive results on whether DATs can enhance medication adherence among persons with TB. OBJECTIVE: This study aims to understand the acceptability of DATs, namely, medication labels and smart pillboxes, among persons with TB, health care workers (HCWs), and key informants (KIs) in the Philippines. The objective is to gain valuable insights that can inform the design and implementation of DATs in the Southeast Asian region, which meet the needs and preferences of end users. METHODS: Persons with TB, HCWs, and KIs were recruited from intervention facilities to participate in in-depth interviews conducted between March 2022 and January 2023. These interviews were transcribed and translated into English. A thematic analysis was carried out using NVivo software (Lumivero) to identify and analyze themes. Themes were then structured within a modified social-ecological model. RESULTS: A total of 25 persons with drug-sensitive TB and 20 HCWs or KIs were interviewed. Both groups emphasized that users' technology literacy level, financial conditions, and motivation to be cured determined how they interacted with the DAT. They also acknowledged that DATs helped foster their relationship with HCWs and enabled efficient treatment support. Concerning technology, persons with TB found DATs easy to use and able to reduce clinic visits. HCWs mentioned that DATs added to their workload but also allowed them to support users who missed doses. However, both groups experienced technical challenges with DATs. Regarding program implementation, users appreciated the clear explanations and demonstrations provided by HCWs. Yet, some users reported inconsistencies between DAT settings and the information provided. HCWs stressed the importance of comprehensive training and sufficient resources for effective program implementation in the future. At the community level, both groups noted that DATs and program design protected users' privacy and reduced the risk of stigma. Finally, users and HCWs shared various contextual factors that influenced their experience with DAT, including infrastructure challenges and the impact of the COVID-19 pandemic. CONCLUSIONS: In the Philippines, persons with TB and HCWs showed a high level of acceptance and satisfaction with the impact of DAT and program design. They expressed a desire for the continuation of DATs. The challenges encountered underscore the need for ongoing technological development to minimize malfunctions, enhance the capacity of health facilities, and improve infrastructure. DATs have demonstrated their ability to strengthen user-HCW relationships and protect users from stigmatization. Additional efforts are required to scale up the DAT program in the Philippines.


Assuntos
Pessoal de Saúde , Adesão à Medicação , Pesquisa Qualitativa , Tuberculose , Humanos , Filipinas/epidemiologia , Masculino , Feminino , Pessoal de Saúde/psicologia , Adulto , Tuberculose/tratamento farmacológico , Adesão à Medicação/psicologia , Pessoa de Meia-Idade , Entrevistas como Assunto , Antituberculosos/uso terapêutico , Aceitação pelo Paciente de Cuidados de Saúde/psicologia
19.
J Neurodev Disord ; 16(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166648

RESUMO

BACKGROUND: Sensory processing dysfunction (SPD) is linked to altered white matter (WM) microstructure in school-age children. Sensory over-responsivity (SOR), a form of SPD, affects at least 2.5% of all children and has substantial deleterious impact on learning and mental health. However, SOR has not been well studied using microstructural imaging such as diffusion MRI (dMRI). Since SOR involves hypersensitivity to external stimuli, we test the hypothesis that children with SOR require compensatory neuroplasticity in the form of superior WM microstructural integrity to protect against internalizing behavior, leaving those with impaired WM microstructure vulnerable to somatization and depression. METHODS: Children ages 8-12 years old with neurodevelopmental concerns were assessed for SOR using a comprehensive structured clinical evaluation, the Sensory Processing 3 Dimensions Assessment, and underwent 3 Tesla MRI with multishell multiband dMRI. Tract-based spatial statistics was used to measure diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) metrics from global WM and nineteen selected WM tracts. Correlations of DTI and NODDI measures with measures of somatization and emotional disturbance from the Behavioral Assessment System for Children, 3rd edition (BASC-3), were computed in the SOR group and in matched children with neurodevelopmental concerns but not SOR. RESULTS: Global WM fractional anisotropy (FA) is negatively correlated with somatization and with emotional disturbance in the SOR group but not the non-SOR group. Also observed in children with SOR are positive correlations of radial diffusivity (RD) and free water fraction (FISO) with somatization and, in most cases, emotional disturbance. These effects are significant in boys with SOR, whereas the study is underpowered for girls. The most affected white matter are medial lemniscus and internal capsule sensory tracts, although effects of SOR are observed in many cerebral, cerebellar, and brainstem tracts. CONCLUSION: White matter microstructure is related to affective behavior in children with SOR.


Assuntos
Substância Branca , Masculino , Criança , Feminino , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Cerebelo
20.
Antimicrob Agents Chemother ; 57(10): 4848-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877677

RESUMO

Class D ß-lactamases that hydrolyze carbapenems such as imipenem and doripenem are a recognized danger to the efficacy of these "last-resort" ß-lactam antibiotics. Like all known class D carbapenemases, OXA-23 cannot hydrolyze the expanded-spectrum cephalosporin ceftazidime. OXA-146 is an OXA-23 subfamily clinical variant that differs from the parent enzyme by a single alanine (A220) inserted in the loop connecting ß-strands ß5 and ß6. We discovered that this insertion enables OXA-146 to bind and hydrolyze ceftazidime with an efficiency comparable to those of other extended-spectrum class D ß-lactamases. OXA-146 also binds and hydrolyzes aztreonam, cefotaxime, ceftriaxone, and ampicillin with higher efficiency than OXA-23 and preserves activity against doripenem. In this study, we report the X-ray crystal structures of both the OXA-23 and OXA-146 enzymes at 1.6-Å and 1.2-Å resolution. A comparison of the two structures shows that the extra alanine moves a methionine (M221) out of its normal position, where it forms a bridge over the top of the active site. This single amino acid insertion also lengthens the ß5-ß6 loop, moving the entire backbone of this region further away from the active site. A model of ceftazidime bound in the active site reveals that these two structural alterations are both likely to relieve steric clashes between the bulky R1 side chain of ceftazidime and OXA-23. With activity against all four classes of ß-lactam antibiotics, OXA-146 represents an alarming new threat to the treatment of infections caused by Acinetobacter spp.


Assuntos
Antibacterianos/farmacologia , Aztreonam/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Acinetobacter/efeitos dos fármacos , Acinetobacter/enzimologia , Sequência de Aminoácidos , Ampicilina/farmacologia , Cristalografia por Raios X , Doripenem , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA