Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 894: 164781, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37321496

RESUMO

Packaging can play a substantial role in moving towards more sustainable food systems by affecting the amount of food loss and waste. However, the use of plastic packaging gives rise to environmental concerns, such as high energy and fossil resource use, and waste management issues such as marine litter. Alternative biobased biodegradable materials, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) could address some of these issues. For a careful comparison in terms of environmental sustainability between fossil-based, non-biodegradable and alternative plastic food packaging, not only production but also food preservation and end-of-life (EoL) fate must be considered. Life cycle assessment (LCA) can be used to evaluate the environmental performance, but the environmental burden of plastics released into the natural environment is not yet embedded in classical LCA. Therefore, a new indicator is being developed that accounts for the effect of plastic litter on marine ecosystems, one of the main burdens of plastic's EoL fate: lifetime costs on marine ecosystem services. This indicator enables a quantitative assessment and thus addresses a major criticism of plastic packaging LCA. The comprehensive analysis is performed on the case of falafel packaged in PHBV and conventional polypropylene (PP) packaging. Considering the impact per kilogram of packaged falafel consumed, food ingredients make the largest contribution. The LCA results indicate a clear preference for the use of PP trays, both in terms of (1) impact of packaging production and dedicated EoL treatment and (2) packaging-related impacts. This is mainly due to the higher mass and volume of the alternative tray. Nevertheless, since PHBV has limited persistence in the environment compared to PP packaging, the lifetime costs for marine ES are about seven times lower, and this despite its higher mass. Although further refinements are needed, the additional indicator allows for a more balanced evaluation of plastic packaging.


Assuntos
Ecossistema , Plásticos , Animais , Embalagem de Alimentos , Polipropilenos , Poliésteres , Estágios do Ciclo de Vida
2.
Sci Total Environ ; 808: 152125, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34871681

RESUMO

Nowadays, a variety of methodologies are available to assess local, regional and global impacts of human activities on ecosystems, which include Life Cycle Assessment (LCA), Environmental Risk Assessment (ERA) and Ecosystem Services Assessment (ESA). However, none can individually assess both the positive and negative impacts of human activities at different geographical scales in a comprehensive manner. In order to overcome the shortcomings of each methodology and develop more holistic assessments, the integration of these methodologies is essential. Several studies have attempted to integrate these methodologies either conceptually or through applied case studies. To understand why, how and to what extent these methodologies have been integrated, a total of 110 relevant publications were reviewed. The analysis of the case studies showed that the integration can occur at different positions along the cause-effect chain and from this, a classification scheme was proposed to characterize the different integration approaches. Three categories of integration are distinguished: post-analysis, integration through the combination of results, and integration through the complementation of a driving method. The literature review highlights that the most recurrent type of integration is the latter. While the integration through the complementation of a driving method is more realistic and accurate compared to the other two categories, its development is more complex and a higher data requirement could be needed. In addition to this, there is always the risk of double-counting for all the approaches. None of the integration approaches can be categorized as a full integration, but this is not necessarily needed to have a comprehensive assessment. The most essential aspect is to select the appropriate components from each methodology that can cover both the environmental and socioeconomic costs and benefits of human activities on the ecosystems.


Assuntos
Efeitos Antropogênicos , Ecossistema , Conservação dos Recursos Naturais , Humanos , Medição de Risco
3.
Sci Total Environ ; 770: 144747, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33736364

RESUMO

The transformation of ecosystems is known to be a major driver of biodiversity loss. Consequently, supporting tools such as life cycle assessment methods (LCA) include this aspect in the evaluation of a product's environmental performance. Such methods consist of quantifying input and output flows to assess their specific contributions to impact categories. Therefore, land occupation and transformation are considered as inputs to assess biodiversity impacts amongst others. However, the modelling of biodiversity impact in deep seafloor ecosystems is still lacking in LCA. Most of the LCA methods focus on terrestrial biodiversity and none of them can be transposed to benthic deep sea because of knowledge gaps. This manuscript proposes a LCA framework to assess biodiversity impacts in deep seafloor ecosystems. The framework builds upon the existing methods accounting for biodiversity impacts in terrestrial and coastal habitats. A two-step approach is proposed, assessing impacts on regional and on global biodiversity. While the evaluation of regional biodiversity impacts relies only on the benthic communities' response to disturbance, the global perspective considers ecosystem vulnerability and scarcity. Those provide additional perspective for the comparison of impacts occurring in different ecosystems. The framework is operationalised to a case study for deep-sea mining in the Clarion Clipperton Fractures Zone (CCZ). Through the large variety of data sources needed to run the impact evaluation modelling, the framework shows consistency and manages the existing limitations in the understanding of deep seafloor ecosystems, although limitations for its application in the CCZ were observed mainly due to the lack of finer scaled habitat maps and data on connectivity. With growing interest for commercial activities in the deep sea and hence, increased environmental research, this work is a first attempt for the implementation of LCA methods to deep-sea products.


Assuntos
Biodiversidade , Ecossistema , Animais , Estágios do Ciclo de Vida , Mineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA