Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 25(11): e202400130, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38427966

RESUMO

In this study, we examine the adiabat-to-diabat (ATD) angles for trajectories in 2-dimensional vibrational subspace of the seam space of two degenerate states. In circulating around the tangential touching degeneracy center, the ATD angle is changed by 2 π ${2\pi }$ or 0, similar to the Renner-Teller problem and the pseudo-Jahn-Teller problem, respectively. These ATD angle profiles may be indistinguishable from those of circulating multiple conical intersections or a pseudo-Jahn-Teller center. Methods to discern those seemingly indistinguishable cases are proposed. A sharp zigzag variation of the ATD angle is seen as a feature for trajectories that graze a pseudo-Jahn-Teller-type tangential touching center, in contrast to the monotonic steep variation for grazing a conical intersection or a Renner-Teller-type tangential touching center.

2.
Org Biomol Chem ; 22(20): 4052-4056, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38713056

RESUMO

Alkylidene dihydropyridines (ADHPs) are electron-rich nucleophilic intermediates that can be readily prepared by dearomatization of 4-alkylpyridines using chloroformate reagents and mild base. Their stability and reactivity can be tuned with the chloroformate reagent used as evidenced by NMR chemical shifts and oxidation potentials. ADHPs prepared with ethyl, allyl and trichloroethyl chloroformate undergo decomposition under an oxygen atmosphere at different rates (ethyl > allyl > trichloroethyl), predominantly to the corresponding 4-acylpyridine. The ADHPs derived from benzyl chloroformate are stable towards oxidation, and those derived from phenyl chloroformate hydrolyze readily.

3.
J Am Chem Soc ; 145(20): 11012-11018, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37172320

RESUMO

A BF3-catalyzed atom-economical fluorocarbamoylation reaction of alkyne-tethered carbamoyl fluorides is reported. The catalyst acts as both a fluoride source and Lewis acid activator, thereby enabling the formal insertion of alkynes into strong C-F bonds through a halide recycling mechanism. The developed method provides access to 3-(fluoromethylene) oxindoles and γ-lactams with excellent stereoselectivity, including fluorinated derivatives of known protein kinase inhibitors. Experimental and computational studies support a stepwise mechanism for the fluorocarbamoylation reaction involving a turnover-limiting cyclization step, followed by internal fluoride transfer from a BF3-coordinated carbamoyl adduct. For methylene oxindoles, a thermodynamically driven Z-E isomerization is facilitated by a transition state with aromatic character. In contrast, this aromatic stabilization is not relevant for γ-lactams, which results in a higher barrier for isomerization and the exclusive formation of the Z-isomer.

4.
Chemistry ; 29(32): e202300173, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36971382

RESUMO

A series of luminescent, neutral pentacoordinate dithieno[3,2-b:2',3'-d]phosphole compounds was synthesized by [4+1] cycloaddition of o-quinones with the corresponding trivalent phospholes. The electronic and geometrical modification of the π-conjugated scaffold implemented here impacts the aggregation behavior of the species in solution. It proved successful in generating species with improved Lewis acidity of the phosphorus center that was then leveraged for small-molecule activation. Hydride abstraction from an external substrate involving the hypervalent species is followed by an intriguing P-mediated umpolung from the hydride to a proton and supports the catalytic potential of this class of main-group Lewis acids for organic chemistry. This study is a comprehensive investigation into various methods, including electronic, chemical, geometric modifications (and sometimes combinations of these approaches) to systematically improve the Lewis acidity of neutral and stable main-group Lewis acids with practical value for a range of chemical transformations.


Assuntos
Química Orgânica , Ácidos de Lewis , Catálise , Formação de Conceito , Reação de Cicloadição
5.
J Chem Phys ; 157(6): 064104, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35963721

RESUMO

Heavy element compounds with high symmetries often feature both spin-orbit coupling and vibronic coupling. This is especially true for systems with tetrahedral and octahedral symmetries, whose electronic states may be threefold degenerate and experience complicated Jahn-Teller and pseudo-Jahn-Teller interactions. To accurately describe these interactions, high quality spin-orbit vibronic Hamiltonian operators are needed. In this study, we present a unified one-electron Hamiltonian formalism for spin-orbit vibronic interactions for systems in all tetrahedral and octahedral symmetries. The formalism covers all spin-orbit Jahn-Teller and pseudo-Jahn-Teller problems in the symmetries with arbitrary types and arbitrary numbers of vibrational modes and generates Hamiltonian expansion formulas of arbitrarily high order.

6.
J Chem Phys ; 156(3): 034303, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35065555

RESUMO

Singlet fission is a highly desired process in organic photovoltaic devices. It splits one singlet exciton into two triplet excitons and enhances the power-conversion efficiency. However, the exploitation of this process in photovoltaic devices is plagued by the small number of singlet fission chromophores. In this work, we designed a series of singlet fission chromophores by introducing N-oxyl fragments into anthracene. The diradical character brought by the N-oxyl fragments and the structural reorganizations in response to excitation to the lowest triplet state allow some of the investigated molecules to satisfy the thermodynamic energy criteria for singlet fission chromophores.

7.
Org Biomol Chem ; 19(21): 4796-4802, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33982733

RESUMO

The evolution of frustrated Lewis pair chemistry has led to significant research into the development of new Lewis acidic boranes. Much of this has focused on modifying aryl substituents rather than introducing heteroatoms bound to boron. We recently reported that bis(pentafluorophenyl)phenothiazylborane (1) could be used as a Lewis acid catalyst for the heterolytic dehydrocoupling of stannanes. In this work, we synthesize and characterize a family of Lewis acidic aminoboranes and explored their reactivity with various Lewis bases as well as their efficacy as catalysts for stannane dehydrocoupling and hydrosilylation. Quantum chemical calculations were undertaken to understand the origins of the Lewis acidity and the most Lewis acidic aminoborane (5) was found to be an effective catalyst even in coordinating solvents such as water or acetonitrile, suggesting the amino substituent provides a level of protection against competing donors.

8.
J Chem Phys ; 155(22): 224108, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34911326

RESUMO

Spin-orbit coupling and vibronic coupling are both closely related to orbital degeneracy of electronic states. Both types of coupling play significant roles in determining properties of heavy element compounds and shall be treated on the same footing. In this work, we derive a unified one-electron Hamiltonian formalism for spin-orbit and vibronic interactions for systems in all axial symmetries. The one-electron formalism is usually adequate as the spin-orbit interaction can often be approximated as a one-electron interaction. For the first time, the formalism covers spin-orbit and vibronic couplings in all axial symmetries from C1 to D∞h, arbitrary types of vibrational modes in those symmetries, and an arbitrary number of those modes and gives Hamiltonian expansions up to an arbitrary order.

9.
J Phys Chem A ; 124(40): 8159-8172, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-32902270

RESUMO

We used quantum chemistry methods at the levels of mixed-reference spin-flip time-dependent density functional theory and multireference perturbation theory to study diboron- and diaza-doped anthracenes and phenanthrenes. This class of structures recently surged as potential singlet fission chromophores. We studied electronic structures of their excited states and clarified the reasons why they satisfy or fail to satisfy the energy criteria for singlet fission chromophores. Many studied structures have their S1 states not dominated by HOMO → LUMO excitation, so they cannot be described using the conventional two site model. This is attributed to frontier orbital energy shifts induced by the doping and different charge-transfer energies in different one-electron singlet excitations or, in other words, different polarizations of hole and/or particle orbitals in their S1 and T1 states. There is a mirror relation between the orbital energy shifts induced by diboron- and diaza-dopings, which together with alternant hydrocarbon pairings of occupied and unoccupied orbitals, leads to more mirror relations between the excited states of the two types of doped structures.

10.
Phys Chem Chem Phys ; 20(39): 25275-25294, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30276376

RESUMO

We report a study on the non-adiabatic molecular dynamics (NA-MD) of the charge transfer (CT) process in the boron subphtalocyanine chloride (SubPc)/fullerene (C60) interface using our newly implemented Libra-X software package, which is based on an interface of the Libra NA-MD library and the GAMESS electronic structure software. In particular, we address the following aspects of the simulation protocol: (a) the choice of the potential used to treat interatomic interactions and its effect on the structures of the complex and CT rates; (b) the choice of the electronic structure methodology used; and (c) the choice of the trajectory surface hopping (TSH) methodology used. From our analysis of the electronic structure, we suggest that the distortion of the SubPc conical structure affects orbital localization and that the "breathing" motion of SubPc drives the CT process in SubPc/C60. This study illustrates that the choice of the TSH methodology and electronic decoherence are crucial for the CT simulation. We extend our analysis of CT in SubPc/(C60)n models by increasing the number of C60 molecules up to n = 4. We find that the details of the interfacial SubPc/(C60)n geometry determine the CT rate. Finally, we find the computed CT timescale to be in the range of 2.2-5.0 ps, which is in agreement with the experimentally determined timescale in the order of magnitude of ∼10 ps. The developed open-source Libra-X package is freely available on the Internet at https://github.com/Quantum-Dynamics-Hub/Libra-X.

11.
Phys Chem Chem Phys ; 19(33): 22272-22281, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28805229

RESUMO

The minimum energy structures, i.e., trans-HONO, cis-HONO, HNO2, and OH + NO, as well as the corresponding transition states, i.e., TStrans↔cis, TS1,2H-shift, and TS1,3H-shift, on the ground state potential energy surface (PES) of HONO have been characterized at the CCSD(T)-F12/cc-pVTZ-F12 level of theory. Using the same level of theory, a six-dimensional (6D) PES, encompassing the trans- and cis-isomers as well as the associated transition state, is fit in a sum-of-products form using neural network exponential fitting functions. A second PES is developed based on ab initio data from CCSD(T) computations extrapolated to the complete basis set (CBS) limit. The PES fits, based on 90 neurons, are accurate (RMSEs ≈ 10 cm-1) up to 10 000 cm-1 above the energy minimum. The PESs are validated by computing vibrational energies using block improved relaxation with the multi configuration time dependent Hartree (MCTDH) approach. The vibrational frequencies obtained on the PESs are compared to available experimental measurements, previous theoretical computations based on a CCSD(T)/cc-pVQZ(-g functions) PES, and anharmonic frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory obtained using second-order vibrational perturbation theory. The results suggest that these are the best available PESs for HONO, and thus, should be suitable for a variety of dynamics studies, including quantum dynamics with MCTDH where the sum-of-products form can be exploited for computational efficiency.

12.
Phys Chem Chem Phys ; 18(47): 32466-32476, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27869257

RESUMO

Understanding the dynamics of electron-ion energy transfer in warm dense (WD) matter is important to the measurement of equation of state (EOS) properties and for understanding the energy balance in dynamic simulations. In this work, we present a comprehensive investigation of nonadiabatic electron relaxation and thermal excitation dynamics in aluminum under high pressure and temperature. Using quantum-classical trajectory surface hopping approaches, we examine the role of nonadiabatic couplings and electronic decoherence in electron-nuclear energy transfer in WD aluminum. The computed timescales range from 400 fs to 4.0 ps and are consistent with existing experimental studies. We have derived general scaling relationships between macroscopic parameters of WD systems such as temperature or mass density and the timescales of energy redistribution between quantum and classical degrees of freedom. The scaling laws are supported by computational results. We show that electronic decoherence plays essential role and can change the functional dependencies qualitatively. The established scaling relationships can be of use in modelling of WD matter.

13.
J Chem Phys ; 144(17): 174305, 2016 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-27155638

RESUMO

A six-dimensional potential energy surface (PES) for formyl fluoride (HFCO) is fit in a sum-of-products form using neural network exponential fitting functions. The ab initio data upon which the fit is based were computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12]/cc-pVTZ-F12 level of theory. The PES fit is accurate (RMSE = 10 cm(-1)) up to 10 000 cm(-1) above the zero point energy and covers most of the experimentally measured IR data. The PES is validated by computing vibrational energies for both HFCO and deuterated formyl fluoride (DFCO) using block improved relaxation with the multi-configuration time dependent Hartree approach. The frequencies of the fundamental modes, and all other vibrational states up to 5000 cm(-1) above the zero-point energy, are more accurate than those obtained from the previous MP2-based PES. The vibrational frequencies obtained on the PES are compared to anharmonic frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory obtained using second-order vibrational perturbation theory. The new PES will be useful for quantum dynamics simulations for both HFCO and DFCO, e.g., studies of intramolecular vibrational redistribution leading to unimolecular dissociation and its laser control.

14.
J Phys Chem Lett ; 15(1): 43-50, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38127796

RESUMO

Singlet fission (SF) has the potential to play a key role in photovoltaics since it generates a larger number of longer-lived triplet excitons after photoabsorption. Intramolecular SF (iSF) is of special interest since it enables tuning of SF efficiency by adjusting interchromophore configuration through covalent interaction. However, as elaborated in the present work, iSF chromophores are doomed to dissatisfy one general thermodynamic criterion for all SF chromophores, intramolecular or not: E(T2) ≥ 2E(T1), and therefore, the fusion of two triplet excitons to one triplet exciton is thermodynamically favorable. In our nonadiabatic quantum dynamics simulation for a model iSF chromophore, this expected fusion does not occur, because of the inefficient intersystem crossing hidden under the cover of internal conversion of the triplet fusion. A reconciliation is achieved between the dissatisfaction of E(T2) ≥ 2E(T1) and the large tetraradical character for general iSF chromophores.

15.
J Phys Chem A ; 117(32): 6925-31, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23199237

RESUMO

The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.

16.
J Chem Theory Comput ; 19(21): 7776-7786, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37847554

RESUMO

Spatial degeneracy of electronic states closely connects spin-orbit coupling and vibronic coupling, which together determine properties of materials, especially heavy element compounds. Accurate description of those materials entails accurate mathematical formulas for spin-orbit vibronic Hamiltonians. For the first time ever, we in this work derive the Hamiltonian formalism to describe all spin-orbit Jahn-Teller and pseudo-Jahn-Teller vibronic problems in all axial symmetries. The conventional one-electron approximation of spin-orbit coupling, which was the foundation of all previous studies in this field, is not involved in the present work. Actually, the present formalism is applicable to all time-reversal symmetric hermitian Hamiltonian that has a Rank-1 dependence on the spin operator, without any restriction on the type and the number of term symbols and vibrational modes.

17.
J Chem Theory Comput ; 19(7): 2092-2101, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36966419

RESUMO

Singlet fission is of key importance in harvesting solar energy in solar cells, as it generates a pair of triplet excitons on the incidence of a photon. This phenomenon is not yet widely employed in the organic photovoltaics industry mostly because of the rarity of singlet fission chromophores. Pyrazino[2,3-g]quinoxaline-1,4,6,9-tetraoxide was recently designed as the smallest intramolecular singlet fission chromophore, and it undergoes the fastest singlet fission with a 16 fs time scale. The subsequent separation of the generated triplet-pair is of likewise importance as their efficient generation. Through quantum chemistry calculations and quantum dynamics simulations, we show that the triplet-pair separates to residing on two chromophores with an ∼80% probability on each collision between a chromophore with the triplet-pair and a ground state chromophore. Avoided crossing, instead of conical intersection, is involved in the efficient exciton separation.

18.
J Phys Chem Lett ; 13(48): 11076-11085, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36417555

RESUMO

We designed an intramolecular singlet fission (iSF) chromophore, pyrazino[2,3-g]quinoxaline-1,4,6,9-tetraoxide. Appropriate substitutions into anthracene enhance the tetraradical character, so that the molecule accommodates a pair of triplet excitons in its lowest singlet excited state. Our simulation showed a 16 fs fast iSF of the design, which is a new record. The design also sets a new record of small size iSF chromophore and high exciton density. The design can be synthesized by oxidizing the tertiary N centers of the existent pyrazino[2,3-g]quinoxaline.

19.
Dalton Trans ; 50(6): 2243-2252, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33503083

RESUMO

A series of neutral pentacoordinate dithieno[3,2-b:2',3'-d]phosphole compounds were synthesized by [4 + 1] cycloaddition with o-quinones. Counter to the expected trigonal bipyramidal geometry, the luminescent hypervalent dithienophospholes exhibit square pyramidal geometry with inherently Lewis acidic phosphorus center that is stabilized via supramolecular π-stacking interactions in the solid state and in solution. Due to their Lewis-acid character, the compounds react with nucleophiles, suggesting their potential as mediator in organic transformations. The new species thus present an intriguing structural plaform for the design of neutral P(v) Lewis acids with useful reactivities.

20.
Dalton Trans ; 49(45): 16054-16058, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32134094

RESUMO

We synthesized a novel Lewis acidic aminoborane containing a phenothiazyl substituent and demonstrated its potential to catalytically promote the dehydrocoupling of tin hydrides. The observed reactivity would imply a homolytic frustrated Lewis pair type mechanism, however computational analysis suggests a heterolytic mechanism for this reaction. This result represents one of the first frustrated Lewis pair systems to dehydrocouple stannanes in a heterolytic fashion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA