Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Saudi Pharm J ; 32(4): 102002, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439951

RESUMO

Pectin hydrogels have emerged as a highly promising medium for the controlled release of pharmaceuticals in the dynamic field of drug delivery. The present review sheds light on the broad range of applications and potential of pectin-based hydrogels in pharmaceutical formulations. Pectin, as a biopolymer, is a versatile candidate for various drug delivery systems because of its wide range of properties and characteristics. The information provided on formulation strategies and crosslinking techniques provides researchers with tools to improve drug entrapment and controlled release. Furthermore, this review provides a more in-depth understanding of the complex factors influencing drug release from pectin hydrogels, such as the impact of environmental conditions and drug-specific characteristics. Pectin hydrogels demonstrate adaptability across diverse domains, ranging from applications in oral and transdermal drug delivery to contributions in wound healing, tissue engineering, and ongoing clinical trials. While standardization and regulatory compliance remain significant challenges, the future of pectin hydrogels appears to be bright, opening up new possibilities for advanced drug delivery systems.

2.
AAPS PharmSciTech ; 24(8): 253, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062314

RESUMO

Low aqueous solubility of drug candidates is an ongoing challenge and pharmaceutical manufacturers pay close attention to amorphization (AMORP) technology to improve the solubility of drugs that dissolve poorly. Amorphous drug typically exhibits much higher apparent solubility than their crystalline form due to high energy state that enable them to produce a supersaturated state in the gastrointestinal tract and thereby improve bioavailability. The stability and augmented solubility in co-amorphous (COA) formulations is influenced by molecular interactions. COA are excellent carriers-based drug delivery systems for biopharmaceutical classification system (BCS) class II and class IV drugs. The three important critical quality attributes, such as co-formability, physical stability, and dissolution performance, are necessary to illustrate the COA systems. New amorphous-stabilized carriers-based fabrication techniques that improve drug loading and degree of AMORP have been the focus of emerging AMORP technology. Numerous low-molecular-weight compounds, particularly amino acids such as glutamic acid, arginine, isoleucine, leucine, valine, alanine, glycine, etc., have been employed as potential co-formers. The review focus on the prevailing drug AMORP strategies used in pharmaceutical research, including in situ AMORP, COA systems, and mesoporous particle-based methods. Moreover, brief characterization techniques and the application of the different amino acids in stabilization and solubility improvements have been related.


Assuntos
Aminoácidos , Arginina , Aminoácidos/química , Preparações Farmacêuticas/química , Estabilidade de Medicamentos , Composição de Medicamentos/métodos , Arginina/química , Solubilidade
3.
AAPS PharmSciTech ; 25(1): 6, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129697

RESUMO

Nanoporous materials are categorized as microporous (pore sizes 0.2-2 nm), mesoporous (pore sizes 2-50 nm), and macroporous (pore sizes 50-1000 nm). Mesoporous silica (MS) has gained a significant interest due to its notable characteristics, including organized pore networks, specific surface areas, and the ability to be integrated in a variety of morphologies. Recently, MS has been widely accepted by range of manufacturer and as drug carrier. Moreover, silica nanoparticles containing mesopores, also known as mesoporous silica nanoparticles (MSNs), have attracted widespread attention in additive manufacturing (AM). AM commonly known as three-dimensional printing is the formalized rapid prototyping (RP) technology. AM techniques, in comparison to conventional methods, aid in reducing the necessity for tooling and allow versatility in product and design customization. There are generally several types of AM processes reported including VAT polymerization (VP), powder bed fusion (PBF), sheet lamination (SL), material extrusion (ME), binder jetting (BJ), direct energy deposition (DED), and material jetting (MJ). Furthermore, AM techniques are utilized in fabrication of various classified fields such as architectural modeling, fuel cell manufacturing, lightweight machines, medical, and fabrication of drug delivery systems. The review concisely elaborates on applications of mesoporous silica as versatile material in fabrication of various AM-based pharmaceutical products with an elaboration on various AM techniques to reduce the knowledge gap.


Assuntos
Nanopartículas , Dióxido de Silício , Impressão Tridimensional , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos
4.
J Biomed Mater Res A ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721841

RESUMO

The worldwide health burden of colorectal cancer is still substantial, and traditional chemotherapeutic drugs sometimes have poor selectivity, which can result in systemic toxicity and unfavorable side effects. For colon-specific medication delivery, bioengineered carbohydrate polymers have shown promise as carriers. They may enhance treatment effectiveness while minimizing systemic exposure and associated side effects. The unique properties of these manufactured or naturally occurring biopolymers, such as hyaluronic acid, chitosan, alginate, and pectin, enable targeted medicine release. These qualities can be changed to meet the physiological needs of the colon. In the context of colorectal cancer therapy, this article provides a comprehensive overview of current developments and prospective future directions in the field of bioengineered carbohydrate polymer synthesis for colon-specific drug delivery. We discuss numerous techniques for achieving colon-targeted drug release, including enzyme-sensitive polymers, pH-responsive devices, and microbiota-activated processes. To increase tumor selectivity and cellular uptake, we also examine the inclusion of active targeting approaches, such as conjugating specific ligands. Furthermore, we discuss the potential of combination treatment strategies, which use the coadministration of numerous therapeutic medications to target multiple pathways implicated in cancer growth and address drug resistance mechanisms. We address recent biomimetic advances that potentially improve the biocompatibility, cellular uptake, and tumor penetration of carbohydrate polymer-based nanocarriers. These methods involve protein corona engineering and cell membrane coating. Furthermore, we look at the possibility of intelligent and sensitive systems that may adjust their behaviors in response to certain inputs or feedback loops, allowing for precise and regulated drug distribution.

5.
Curr Med Chem ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685773

RESUMO

The review explores the enhancement of therapeutic efficacy through the innovative use of polymeric molecular envelope technology (MET). It delves into the diverse methods employed to achieve superior therapeutic outcomes, shedding light on strategies for improving drug delivery and bioavailability. MET is a promising approach to improve the solubility and bioavailability of poorly water-soluble drugs. This technology involves the use of a molecular envelope of cyclic oligosaccharides called cyclodextrins, which is a supramolecular assembly of amphiphilic molecules that encapsulate and solubilize hydrophobic drug molecules. This can further improve the solubility of the drug by increasing its surface area and reducing its crystallinity. Moreover, MET also protects the drug from degradation and enhances its permeability across biological membranes. Furthermore, the review thoroughly examines the MET, including its methods of preparation, applications in drug encapsulation, and the evaluation of its potential to optimize therapeutic outcomes. By adopting current research and key findings, this review provides valuable insights into the transformative potential of polymeric molecular envelope technology for advancing the field of therapeutics.

6.
Pharm Nanotechnol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38465435

RESUMO

Due to the complexities of the eye's anatomy and physiology, achieving targeted drug delivery with minimal harm to healthy eye tissues has proven to be difficult. The focus of the review is on the potential of lipid and polymer micelle-based drug delivery systems, specifically nanomicelles, to overcome these challenges and improve the absorption of insoluble drugs. Nanomicelles offer several advantages, such as enhanced drug release kinetics, increased drug incorporation, and improved formulation of hydrophobic medicines. The review provides insights into various excipients, preparation methods, and evaluation techniques used in nanomicellar-based drug delivery systems. Furthermore, the review highlights current research and patents related to nanomicelles in ocular drug delivery, suggesting growing interest and potential for future developments in this field. Nanomicelles present a promising approach that may revolutionize ocular drug delivery and open new possibilities for treating various ocular diseases while minimizing adverse effects on healthy eye tissues.

7.
ACS Pharmacol Transl Sci ; 7(4): 967-990, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633600

RESUMO

Precision medicine is transforming colorectal cancer treatment through the integration of advanced technologies and biomarkers, enhancing personalized and effective disease management. Identification of key driver mutations and molecular profiling have deepened our comprehension of the genetic alterations in colorectal cancer, facilitating targeted therapy and immunotherapy selection. Biomarkers such as microsatellite instability (MSI) and DNA mismatch repair deficiency (dMMR) guide treatment decisions, opening avenues for immunotherapy. Emerging technologies such as liquid biopsies, artificial intelligence, and machine learning promise to revolutionize early detection, monitoring, and treatment selection in precision medicine. Despite these advancements, ethical and regulatory challenges, including equitable access and data privacy, emphasize the importance of responsible implementation. The dynamic nature of colorectal cancer, with its tumor heterogeneity and clonal evolution, underscores the necessity for adaptive and personalized treatment strategies. The future of precision medicine in colorectal cancer lies in its potential to enhance patient care, clinical outcomes, and our understanding of this intricate disease, marked by ongoing evolution in the field. The current reviews focus on providing in-depth knowledge on the various and diverse approaches utilized for precision medicine against colorectal cancer, at both molecular and biochemical levels.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38357950

RESUMO

Ovarian cancer poses a formidable health challenge for women globally, necessitating innovative therapeutic approaches. This review provides a succinct summary of the current research status on lipid-based nanocarriers in the context of ovarian cancer treatment. Lipid-based nanocarriers, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs), offer a promising solution for delivering anticancer drugs with enhanced therapeutic effectiveness and reduced adverse effects. Their versatility in transporting both hydrophobic and hydrophilic medications makes them well-suited for a diverse range of anticancer drugs. Active targeting techniques like ligand-conjugation and surface modifications have been used to reduce off-target effects and achieve tumour-specific medication delivery. The study explores formulation techniques and adjustments meant to enhance drug stability and encapsulation in these nanocarriers. Encouraging results from clinical trials and preclinical investigations underscore the promise of lipid-based nanocarriers in ovarian cancer treatment, providing optimism for improved patient outcomes. Notwithstanding these advancements, challenges related to clearance, long-term stability, and scalable manufacturing persist. Successfully translating lipidbased nanocarriers into clinical practice requires addressing these hurdles. To sum up, lipidbased nanocarriers are a viable strategy to improve the effectiveness of therapy for ovarian cancer. With their more focused medication administration and lower systemic toxicity, they may completely change the way ovarian cancer is treated and increase patient survival rates. Lipidbased nanocarriers need to be further researched and developed to become a therapeutically viable treatment for ovarian cancer.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38721838

RESUMO

Chitosan (CT), a natural, cationic, chemically stable molecule, biocompatible, biodegradable, nontoxic, polysaccharide derived from the deacetylation of chitin, has very uniquely surfaced as a material of promise for drug delivery and biomedical applications. For the oral, ocular, cutaneous, pulmonary, and nose-to-brain routes, CT-coated nanoparticles (CTCNPs) have numerous advantages, consisting of improved controlled drug release, physicochemical stability, improved cell and tissue interactions, and increased bioavailability and efficacy of the active ingredient. CTCNPs have a broad range of therapeutic properties including anticancer, antiviral, antifungal, anti-inflammatory, antibacterial properties, treating neurological disorders, and other diseases. This has led to substantial research into the many potential uses of CT as a drug delivery vehicle. CT has also been employed in a wide range of biomedical processes, including bone and cartilage tissue regeneration, ocular tissue regeneration, periodontal tissue regeneration, heart tissue regeneration, and wound healing. Additionally, CT has been used in cosmeceutical, bioimaging, immunization, and gene transfer applications. CT exhibits a number of biological activities, which are the basis for its remarkable potential for use as a drug delivery vehicle, and these activities are covered in detail in this article. The alterations applied to CT to obtain the necessary properties have been described.

10.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543115

RESUMO

In recent years, due to their distinctive and adaptable therapeutic effects, many natural bioactive compounds have been commonly used to treat diseases. Their limited solubility, low bioavailability, inadequate gastrointestinal tract stability, high metabolic rate, and shorter duration of action limited their pharmaceutical applications. However, those can be improved using nanotechnology to create various drug delivery systems, including lipid-based nanoparticles, to adjust the compounds' physicochemical properties and pharmacokinetic profile. Because of the enormous technical advancements made in the fundamental sciences and the physical and chemical manipulation of individual atoms and molecules, the subject of nanotechnology has experienced revolutionary growth. By fabricating certain functionalized particles, nanotechnology opens an innovative horizon in research and development for overcoming restrictions, including traditional medication administration systems. Nanotechnology-driven bioactive compounds are certain to have a high impact and clinical value for current and future uses. Lipid-based nanotechnologies were shown to deliver a range of naturally occurring bioactive compounds with decent entrapment potential and stability, a successfully controlled release, increased bioavailability, and intriguing therapeutic activity. This review outlines bioactive compounds such as paclitaxel, curcumin, rhodomyrtone, quercetin, kaempferol, resveratrol, epigallocatechin-3-gallate, silymarin, and oridonin, fortified within either a natural or synthetic lipid-based drug delivery system based on nanotechnology and their evaluation and clinical considerations.

11.
Curr Med Chem ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38910490

RESUMO

Anthocyanins (ANCs) are obtained from pigmented foods like blueberry, strawberry, and red cabbage and are phenolic compounds belonging to the flavonoids family. ANCs have garnered significant attention in recent years due to their diverse biological activities and potential health benefits. This comprehensive review presents a holistic exploration of anthocyanins, spanning from their chemical structure and biosynthesis pathways to the myriad analytical techniques employed for their identification and quantification. Furthermore, the rich tapestry of plant sources yields anthocyanins is delved into, highlighting their incorporation into various pharmaceutical formulations. This review aims to provide a comprehensive synthesis of current knowledge on anthocyanins, spanning from their origins in nature to their multifaceted pharmacological activities and innovative pharmaceutical applications.

.

12.
Med Oncol ; 41(6): 145, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727885

RESUMO

Polyelectrolytes represent a unique class of polymers abundant in ionizable functional groups. In a solution, ionized polyelectrolytes can intricately bond with oppositely charged counterparts, giving rise to a fascinating phenomenon known as a polyelectrolyte complex. These complexes arise from the interaction between oppositely charged entities, such as polymers, drugs, and combinations thereof. The polyelectrolyte complexes are highly appealing in cancer management, play an indispensable role in chemotherapy, crafting biodegradable, biocompatible 3D membranes, microcapsules, and nano-sized formulations. These versatile complexes are pivotal in designing controlled and targeted release drug delivery systems. The present review emphasizes on classification of polyelectrolyte complex along with their formation mechanisms. This review comprehensively explores the applications of polyelectrolyte complex, highlighting their efficacy in targeted drug delivery strategies for combating different forms of cancer. The innovative use of polyelectrolyte complex presents a potential breakthrough in cancer therapeutics, demonstrating their role in enhancing treatment precision and effectiveness.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Neoplasias , Polieletrólitos , Humanos , Polieletrólitos/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Medicina de Precisão/métodos
13.
Future Sci OA ; 10(1): FSO922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841181

RESUMO

Aim: Photobiomodulation involves the use of low-level light therapy or near-infrared light therapy found to be useful in the treatment of a wide range of neurological diseases. Objective: The aim is to review the mechanism and clinical applications of photobiomodulation therapy (PBMT) in managing Alzheimer's disease. Methods: To ensure that the consensus statement accurately reflects both the experts' viewpoint and the most recent developments in the field, the expert opinions were recorded and thoroughly reviewed. Results: PBMT elicits reduction of beta-amyloid plaque, restoration of mitochondrial function, anti-inflammatory and antioxidant properties with a stimulation in ATP synthesis. Conclusion: The PBMT could be helpful in patients non-responsive to traditional pharmacological therapy providing significant aid in the management of Alzheimer's disease when introduced into the medical field.


Alzheimer's disease (AD) is an incurable progressive neurodegenerative disease clinically manifested with a decline in cognitive function. To ensure that the consensus statement accurately reflects both the experts' viewpoint and the most recent developments in the field, the expert opinions were recorded and thoroughly reviewed. PBMT elicits various mechanisms such as reduction of beta-amyloid plaque, Restoration of mitochondrial function and maintenance the homeostasis, and anti-inflammatory and antioxidant properties with a stimulation in ATP synthesis. The PBMT could be helpful in patients who are non-responsive to conventional pharmacological therapy. This therapy might provide significant aid in the management of AD when introduced into the medical field. However, it requires various intensive research to be conducted for further conclusion.

14.
Curr Med Chem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38847381

RESUMO

Cancer, a complicated and multi-dimensional medical concern worldwide, can be identified via either the growth of malignant tumours or colonisation of nearby tissues attributing to uncontrollable proliferation and division of cells promoted by several influential factors, including family history, exposure to pollutants, choice of lifestyle, and certain infections. The intricate processes underlying the development, expansion, and advancement of cancer are still being studied. However, there are a variety of therapeutic alternatives available for the diagnosis and treatment of cancer depending on the type and stage of cancer as well as the patient's individuality. The bioactive compoundsfortified nanofiber-based advanced therapies are revolutionary models for cancer detection and treatment, specifically targeting melanoma cells via exploring unique properties, such as increased surface area for payload, and imaging and bio-sensing capacities of nano-structured materials with minimal damage to functioning organs. The objective of the study was to gain knowledge regarding the potentiality of Nanofibers (NFs) fabricated using biomaterials in promoting cancer management along with providing a thorough overview of recent developmental initiatives, challenges, and future investigation strategies. Several fabrication approaches, such as electrospinning, self-assembly, phase separation, drawing, and centrifugal spinning of bio-compatible NFs along with characterization techniques, have been elaborated in the review.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38265380

RESUMO

Biotech drugs, including proteins, hormones, enzymes, DNA/RNA therapies, and cell-based treatments, are gaining popularity due to their effectiveness. However, effective delivery systems are needed to overcome administration challenges. Lipid nanoparticles (LNPs) have emerged as promising carriers for various therapies. LNPs are biocompatible, less likely to cause adverse reactions, and can stabilize delicate biological drugs, enhancing their stability and solubility. Scalable and cost-effective manufacturing processes make LNPs suitable for largescale production. Despite recent research efforts, challenges in stability, toxicity, and regulatory concerns have limited the commercial availability of LNP-based products. This review explores the applications, administration routes, challenges, and future directions of LNPs in delivering biopharmaceuticals.

16.
Med Oncol ; 41(2): 51, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195781

RESUMO

Cancer, characterized by the uncontrolled proliferation of aberrant cells, underscores the imperative for innovative therapeutic approaches. Immunotherapy has emerged as a pivotal constituent in cancer treatment, offering improved prognostic outcomes for a substantial patient cohort. Noteworthy for its precision, immunotherapy encompasses strategies such as adoptive cell therapy and checkpoint inhibitors, orchestrating the immune system to recognize and selectively target malignant cells. Exploiting the specificity of the immune response renders immunotherapy efficacious, as it selectively targets the body's immune milieu. Diverse mechanisms underlie cancer immunotherapies, leading to distinct toxicity profiles compared to conventional treatments. A remarkable clinical stride in the anticancer resources is immunotherapy. Remarkably, certain recalcitrant cancers like skin malignancies exhibit resistance to radiation or chemotherapy, yet respond favorably to immunotherapeutic interventions. Notably, combination therapies involving chemotherapy and immunotherapy have exhibited synergistic effects, enhancing overall therapeutic efficacy. Understanding the pivotal role of immunotherapy elucidates its complementary value, bolstering the therapeutic landscape. In this review, we elucidate the taxonomy of cancer immunotherapy, encompassing adoptive cell therapy and checkpoint inhibitors, while scrutinizing their distinct adverse event profiles. Furthermore, we expound on the unprecedented potential of immunogenic vaccines to bolster the anticancer immune response. This comprehensive analysis underscores the significance of immunotherapy in modern oncology, unveiling novel prospects for tailored therapeutic regimens.


Assuntos
Imunoterapia , Neoplasias Cutâneas , Humanos , Oncologia , Terapia Combinada
17.
ACS Omega ; 9(1): 81-96, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222544

RESUMO

The most favored route of drug administration is oral administration; however, several factors, including poor solubility, low bioavailability, and degradation, in the severe gastrointestinal environment frequently compromise the effectiveness of drugs taken orally. Bioengineered polymers have been developed to overcome these difficulties and enhance the delivery of therapeutic agents. Polymeric nanoparticles, including carbon dots, fullerenes, and quantum dots, have emerged as crucial components in this context. They provide a novel way to deliver various therapeutic materials, including proteins, vaccine antigens, and medications, precisely to the locations where they are supposed to have an effect. The promise of this integrated strategy, which combines nanoparticles with bioengineered polymers, is to address the drawbacks of conventional oral medication delivery such as poor solubility, low bioavailability, and early degradation. In recent years, we have seen substantially increased interest in bioengineered polymers because of their distinctive qualities, such as biocompatibility, biodegradability, and flexible physicochemical characteristics. The different bioengineered polymers, such as chitosan, alginate, and poly(lactic-co-glycolic acid), can shield medications or antigens from degradation in unfavorable conditions and aid in the administration of drugs orally through mucosal delivery with lower cytotoxicity, thus used in targeted drug delivery. Future research in this area should focus on optimizing the physicochemical properties of these polymers to improve their performance as drug delivery carriers.

18.
Pharm Nanotechnol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192138

RESUMO

The primary goal of drug formulation is to improve a drug's bioavailability in the body. However, poorly water-soluble drugs present challenging issues related to their solubility and bioavailability factors. Emerging technologies, such as lipid-based drug delivery systems, including micro- or nanoemulsifying drug delivery systems, have become increasingly relevant to address the above challenges. This review presents a thorough overview of self-emulsifying drug delivery systems (SEDDS). It covers the properties, principles, self-emulsification mechanism, formulation strategies, and characterization methods of SEDDS. This review also addresses the delivery of antiviral agents through SEDDS. Moreover, it summarizes the marketed formulations of SEDDS consisting of antiviral agents. This review offers a comprehensive and valuable resource for future perspectives on SEDDS and their potential applications in antiviral drug delivery.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38646682

RESUMO

Central nervous system disorders are prevalent, profoundly debilitating, and poorly managed. Developing innovative treatments for these conditions, including Alzheimer's disease, could significantly improve patients' quality of life and reduce the future economic burden on healthcare systems. However, groundbreaking drugs for central nervous system disorders have been scarce in recent years, highlighting the pressing need for advancements in this field. One significant challenge in the realm of nanotherapeutics is ensuring the precise delivery of drugs to their intended targets due to the complex nature of Alzheimer's disease. Although numerous therapeutic approaches for Alzheimer's have been explored, most drug candidates targeting amyloid-ß have failed in clinical trials. Recent research has revealed that tau pathology can occur independently of amyloid-ß and is closely correlated with the clinical progression of Alzheimer's symptoms. This discovery suggests that tau could be a promising therapeutic target. One viable approach to managing central nervous system disorders is the administration of nanoparticles to neurons, intending to inhibit tau aggregation by directly targeting p-tau. In Alzheimer's disease, beta-amyloid plaques and neurofibrillary tau tangles hinder neuron transmission and function. The disease also triggers persistent inflammation, compromises the blood-brain barrier, leads to brain shrinkage, and causes neuronal loss. While current medications primarily manage symptoms and slow cognitive decline, there is no cure for Alzheimer's.

20.
Curr Top Med Chem ; 24(6): 503-522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38321910

RESUMO

Since their discovery in valsartan-containing drugs, nitrosamine impurities have emerged as a significant safety problem in pharmaceutical products, prompting extensive recalls and suspensions. Valsartan, candesartan, irbesartan, olmesartan, and other sartans have been discovered to have additional nitrosamine impurities, such as N-nitroso-N-methyl-4-aminobutyric acid (NMBA), N-nitroso-Di-isopropyl amine (NDIPA), N-nitroso-Ethyl-Isopropyl amine (NEIPA), and N-nitroso-Diethyl amine (NDEA). Concerns about drug safety have grown in response to reports of nitrosamine contamination in pharmaceuticals, such as pioglitazone, rifampin, rifapentine, and varenicline. This review investigates the occurrence and impact of nitrosamine impurities in sartans and pharmaceutical goods, as well as their underlying causes. The discussion emphasizes the significance of comprehensive risk assessment and mitigation approaches at various phases of medication development and manufacturing. The link between amines and nitrosamine impurities is also investigated, with an emphasis on pH levels and the behaviour of primary, secondary, tertiary, and quaternary amines. Regulations defining standards for nitrosamine assessment and management, such as ICH Q3A-Q3E and ICH M7, are critical in resolving impurity issues. Furthermore, the Global Substance Registration System (GSRS) is underlined as being critical for information sharing and product safety in the pharmaceutical industry. The review specifically focuses on the relationship between ranitidine and N-nitroso dimethyl amine (NDMA) in the context of the implications of nitrosamine contamination on patient safety and medicine supply. The importance of regulatory authorities in discovering and correcting nitrosamine impurities is highlighted in order to improve patient safety, product quality, and life expectancy. Furthermore, the significance of ongoing study and attention to nitrosamine-related repercussions for increasing pharmaceutical safety and overall public health is emphasized.


Assuntos
Contaminação de Medicamentos , Nitrosaminas , Nitrosaminas/análise , Nitrosaminas/química , Humanos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA