Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(7): 071101, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459624

RESUMO

The sensitivity of current and planned gravitational wave interferometric detectors is limited, in the most critical frequency region around 100 Hz, by a combination of quantum noise and thermal noise. The latter is dominated by Brownian noise: thermal motion originating from the elastic energy dissipation in the dielectric coatings used in the interferometer mirrors. The energy dissipation is a material property characterized by the mechanical loss angle. We have identified mixtures of titanium dioxide (TiO_{2}) and germanium dioxide (GeO_{2}) that show internal dissipations at a level of 1×10^{-4}, low enough to provide improvement of almost a factor of 2 on the level of Brownian noise with respect to the state-of-the-art materials. We show that by using a mixture of 44% TiO_{2} and 56% GeO_{2} in the high refractive index layers of the interferometer mirrors, it would be possible to achieve a thermal noise level in line with the design requirements. These results are a crucial step forward to produce the mirrors needed to meet the thermal noise requirements for the planned upgrades of the Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory) and Virgo detectors.

2.
J Chem Phys ; 154(17): 174502, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241045

RESUMO

The energy landscape of ZrO2-doped amorphous Ta2O5 is explored in this work. With models corresponding to experimental concentrations of 50% Zr and 50% Ta cations, we search for, gather, and analyze two-level systems (TLSs) from molecular dynamic simulations. The mechanical loss function is calculated for each TLS individually. The results show that TLS with low asymmetry and large elastic coupling constants contribute the most to mechanical loss. We identify these as "bad actors." The higher barriers relate to the mechanical loss at higher temperatures. The concept of the oxygen cage that describes the local structural environment surrounding a metal ion is introduced. The existence of a drastic change in local environment, or a cage-breaking process, enables us to understand the double peaks present in the asymmetry distribution and provides a pictorial interpretation to distinguish two types of TLS. Quantitatively, a cage-breaking event is related to at least one large distance change in an atom-atom pair, and non-cage-breaking transitions have only small rearrangements. The majority of TLSs are cage-breaking transitions, but non-cage-breaking TLS transitions show higher average mechanical loss in ZrO2-doped Ta2O5. By decomposing the contributions to mechanical loss, we find that the low temperature loss peak near 40 K mainly comes from non-cage-breaking TLS transitions and the second loss peak near 120 K originates from cage-breaking TLS transitions. This finding is important for understanding the interplay between the atomic structure of TLS and mechanical loss.

3.
Sci Adv ; 7(37): eabh1117, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516775

RESUMO

Glasses are nonequilibrium solids with properties highly dependent on their method of preparation. In vapor-deposited molecular glasses, structural organization could be readily tuned with deposition rate and substrate temperature. Here, we show that the atomic arrangement of strong network-forming GeO2 glass is modified at medium range (<2 nm) through vapor deposition at elevated temperatures. Raman spectral signatures distinctively show that the population of six-membered GeO4 rings increases at elevated substrate temperatures. Deposition near the glass transition temperature is more efficient than postgrowth annealing in modifying atomic structure at medium range. The enhanced medium-range organization correlates with reduction of the room temperature internal friction. Identifying the microscopic origin of room temperature internal friction in amorphous oxides is paramount to design the next-generation interference coatings for mirrors of the end test masses of gravitational wave interferometers, in which the room temperature internal friction is a main source of noise limiting their sensitivity.

4.
Sci Rep ; 5: 15522, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26490203

RESUMO

Materials with optimized band gap are needed in many specialized applications. In this work, we demonstrate that Hellmann-Feynman forces associated with the gap states can be used to find atomic coordinates that yield desired electronic density of states. Using tight-binding models, we show that this approach may be used to arrive at electronically designed models of amorphous silicon and carbon. We provide a simple recipe to include a priori electronic information in the formation of computer models of materials, and prove that this information may have profound structural consequences. The models are validated with plane-wave density functional calculations.

5.
Nanoscale Res Lett ; 9(1): 594, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426005

RESUMO

Chalcogenide glasses doped with silver have many applications including their use as a novel radiation sensor. In this paper, we undertake the first atomistic simulation of radiation damage and healing in silver-doped Germanium-selenide glass. We jointly employ empirical potentials and ab initio methods to create and characterize new structural models and to show that they are in accord with many experimental observations. Next, we simulate a thermal spike and track the evolution of the radiation damage and its eventual healing by application of a simulated annealing process. The silver network is strongly affected by the rearrangements, and its connectivity (and thus contribution to the electrical conductivity) change rapidly in time. The electronic structure of the material after annealing is essentially identical to that of the initial structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA