Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 116(44): 10712-20, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23061532

RESUMO

The reaction of hydroxyl radical ((•)OH) with the nucleic acid base analogue 2-thiouracil (1) has been studied by pulse radiolysis experiments and DFT. The generic intermediate radicals feasible for the (•)OH reactions with 1, namely, one electron oxidation product (1(•+)), (•)OH-adducts (3(•), 4(•), and 5(•)), and H-abstracted radicals (6(•) and 7(•)), were characterized by interpreting their electronic and structural properties along with calculated energetics and UV-vis spectra. Pulse radiolysis experiments showed that the transient formed in the reaction of (•)OH with 1 in water at pH 6.5 has λ(max) at 430 nm. A bimolecular rate constant, k(2) of 9.6 × 10(9) M(-1) s(-1), is determined for this reaction via competition kinetics with 2-propanol. The experiments suggested that the transient species could be a dimer radical cation 2(•+), formed by the reaction of 1 with the radical cation 1(•+). For this reaction, an equilibrium constant of 4.7 × 10(3) M(-1) was determined. The transient formed in the reaction of 1 with pulse radiolytically produced Br(2)(•-) at pH 6.5 as well as Cl(2)(•-) at pH 1 has also produced λ(max) at 430 nm and suggested the formation of 2(•+). The calculated UV-vis spectra of the transient species (1(•+), 3(•), 4(•), 5(•), 6(•), and 7(•)) showed no resemblance to the experimental spectra, while that of 2(•+) (λ(max) = 420 nm) agreed well with the experimental value and thus confirmed the formation of 2(•+). The 420 nm peak was due to σ → σ* electronic excitation centered on a 2-center-3-electron (2c-3e) sulfur-sulfur bond [-S∴S-]. 2(•+) is the first reported example of a dimer radical cation in a pyrimidine heterocyclic system. Further, 5-C and 6-C substituted (substituents are -F, -Cl, -NH(2), -N(CH(3))(2), -OCH(3), -CF(3), -CH(3), -CH(2)CH(3), n-propyl, phenyl, and benzyl) and 5,6-disubstituted 2-thiouracil systems have been characterized by DFT and found that the reaction (1 + 1(•+) → 2(•+)) is exergonic (1.12-13.63 kcal/mol) for many of them.


Assuntos
Teoria Quântica , Tiouracila/química , Estrutura Molecular , Oxirredução , Radiólise de Impulso , Tiouracila/análogos & derivados
2.
J Phys Chem A ; 110(40): 11517-26, 2006 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17020265

RESUMO

Pulse radiolysis and density functional theory (DFT) calculations at B3LYP/6-31+G(d,p) level have been carried out to probe the reaction of the water-derived hydroxyl radicals (*OH) with 5-azacytosine (5Ac) and 5-azacytidine (5Acyd) at near neutral and basic pH. A low percentage of nitrogen-centered oxidizing radicals, and a high percentage of non-oxidizing carbon-centered radicals were identified based on the reaction of transient intermediates with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate), ABTS2-. Theoretical calculations suggests that the N3 atom in 5Ac is the most reactive center as it is the main contributor of HOMO, whereas C5 atom is the prime donor for the HOMO of cytosine (Cyt) where the major addition site is C5. The order of stability of the adduct species were found to be C6-OH_5Ac*>C4-OH_5Ac*>N3-OH_5Ac*>N5-OH_5Ac* both in the gaseous and solution phase (using the PCM model) respectively due to the additions of *OH at C6, C4, N3, and N5 atoms. These additions occur in direct manner, without the intervention of any precursor complex formation. The possibility of a 1,2-hydrogen shift from the C6 to N5 in the nitrogen-centered C6-OH_5Ac* radical is considered in order to account for the experimental observation of the high yield of non-oxidizing radicals, and found that such a conversion requires activation energy of about 32 kcal/mol, and hence this possibility is ruled out. The hydrogen abstraction reactions were assumed to occur from precursor complexes (hydrogen bonded complexes represented as S1, S2, S3, and S4) resulted from the electrostatic interactions of the lone pairs on the N3, N5, and O8 atoms with the incoming *OH radical. It was found that the conversion of these precursor complexes to their respective transition states has ample barrier heights, and it persists even when the effect of solvent is considered. It was also found that the formation of precursor complexes itself is highly endergonic in solution phase. Hence, the abstraction reactions will not occur in the present case. Finally, the time dependent density functional theory (TDDFT) calculations predicted an absorption maximum of 292 nm for the N3-OH_5Ac* adduct, which is close to the experimentally observed spectral maxima at 290 nm. Hence, it is assumed that the addition to the most reactive center N3, which results the N3-OH_5Ac* radical, occurs via a kinetically driven process.


Assuntos
Compostos Aza/química , Citosina/química , Radical Hidroxila/química , Simulação por Computador , Citosina/análogos & derivados , Elétrons , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Radiólise de Impulso , Análise Espectral , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA