RESUMO
Changes in disturbance regimes due to climate change are increasingly challenging the capacity of ecosystems to absorb recurrent shocks and reassemble afterwards, escalating the risk of widespread ecological collapse of current ecosystems and the emergence of novel assemblages1-3. In marine systems, the production of larvae and recruitment of functionally important species are fundamental processes for rebuilding depleted adult populations, maintaining resilience and avoiding regime shifts in the face of rising environmental pressures4,5. Here we document a regional-scale shift in stock-recruitment relationships of corals along the Great Barrier Reef-the world's largest coral reef system-following unprecedented back-to-back mass bleaching events caused by global warming. As a consequence of mass mortality of adult brood stock in 2016 and 2017 owing to heat stress6, the amount of larval recruitment declined in 2018 by 89% compared to historical levels. For the first time, brooding pocilloporids replaced spawning acroporids as the dominant taxon in the depleted recruitment pool. The collapse in stock-recruitment relationships indicates that the low resistance of adult brood stocks to repeated episodes of coral bleaching is inexorably tied to an impaired capacity for recovery, which highlights the multifaceted processes that underlie the global decline of coral reefs. The extent to which the Great Barrier Reef will be able to recover from the collapse in stock-recruitment relationships remains uncertain, given the projected increased frequency of extreme climate events over the next two decades7.
Assuntos
Antozoários/crescimento & desenvolvimento , Antozoários/fisiologia , Recifes de Corais , Aquecimento Global , Animais , Austrália , Temperatura Alta/efeitos adversos , Larva/fisiologia , IncertezaRESUMO
Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them 1 . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 2 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world's largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems 3 , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems.
Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Aquecimento Global , Animais , Antozoários/classificação , Austrália , Temperatura Alta/efeitos adversos , Dinâmica PopulacionalRESUMO
Ocean warming and acidification threaten the future growth of coral reefs. This is because the calcifying coral reef taxa that construct the calcium carbonate frameworks and cement the reef together are highly sensitive to ocean warming and acidification. However, the global-scale effects of ocean warming and acidification on rates of coral reef net carbonate production remain poorly constrained despite a wealth of studies assessing their effects on the calcification of individual organisms. Here, we present global estimates of projected future changes in coral reef net carbonate production under ocean warming and acidification. We apply a meta-analysis of responses of coral reef taxa calcification and bioerosion rates to predicted changes in coral cover driven by climate change to estimate the net carbonate production rates of 183 reefs worldwide by 2050 and 2100. We forecast mean global reef net carbonate production under representative concentration pathways (RCP) 2.6, 4.5, and 8.5 will decline by 76, 149, and 156%, respectively, by 2100. While 63% of reefs are projected to continue to accrete by 2100 under RCP2.6, 94% will be eroding by 2050 under RCP8.5, and no reefs will continue to accrete at rates matching projected sea level rise under RCP4.5 or 8.5 by 2100. Projected reduced coral cover due to bleaching events predominately drives these declines rather than the direct physiological impacts of ocean warming and acidification on calcification or bioerosion. Presently degraded reefs were also more sensitive in our analysis. These findings highlight the low likelihood that the world's coral reefs will maintain their functional roles without near-term stabilization of atmospheric CO2 emissions.
Assuntos
Antozoários/fisiologia , Carbonato de Cálcio/metabolismo , Mudança Climática , Recifes de Corais , Animais , Antozoários/química , Carbonato de Cálcio/química , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/químicaRESUMO
Scientists and managers rely on indicator taxa such as coral and macroalgal cover to evaluate the effects of human disturbance on coral reefs, often assuming a universally positive relationship between local human disturbance and macroalgae. Despite evidence that macroalgae respond to local stressors in diverse ways, there have been few efforts to evaluate relationships between specific macroalgae taxa and local human-driven disturbance. Using genus-level monitoring data from 1205 sites in the Indian and Pacific Oceans, we assess whether macroalgae percent cover correlates with local human disturbance while accounting for factors that could obscure or confound relationships. Assessing macroalgae at genus level revealed that no genera were positively correlated with all human disturbance metrics. Instead, we found relationships between the division or genera of algae and specific human disturbances that were not detectable when pooling taxa into a single functional category, which is common to many analyses. The convention to use percent cover of macroalgae as an indication of local human disturbance therefore likely obscures signatures of local anthropogenic threats to reefs. Our limited understanding of relationships between human disturbance, macroalgae taxa, and their responses to human disturbances impedes the ability to diagnose and respond appropriately to these threats.
Assuntos
Antozoários , Alga Marinha , Animais , Humanos , Recifes de Corais , Ecossistema , Alga Marinha/fisiologia , Antozoários/fisiologia , Oceano PacíficoRESUMO
Population irruptions of crown-of-thorns starfish (COTS) cause extensive degradation of coral reefs, threatening the structure and function of these important ecosystems. For population irruptions to initiate and spread, large numbers of planktonic larvae have to successfully transition into their benthic life-history stage (i.e. settlement), whereby larval behaviour and the presence of settlement cues may shape spatial patterns of recruitment and adult densities. Our results demonstrate that a wide range of coralline algae species induce COTS larvae to settle; however, the capacity to promote settlement success varied manyfold among algal species, ranging from greater than 90% in Melyvonnea cf. madagascariensis to less than 2% in Lithophyllum cf. kotschyanum and two Porolithon species at 24 h. Because many coralline algae species that promote high settlement success are prevalent in shallow reef habitats, our findings challenge the hypothesis that COTS larvae predominantly settle in deep water. Considering both larval behaviour and algal ecology, this study highlights the ecological significance of coralline algae communities in driving recruitment patterns of COTS. More specifically, the local abundance of highly inductive coralline algae (especially, Melyvonnea cf. madagascariensis) may explain some of the marked spatial heterogeneity of COTS populations and the incidence of population irruptions.
Assuntos
Ecossistema , Rodófitas , Animais , Larva , Sinais (Psicologia) , Recifes de Corais , Estrelas-do-MarRESUMO
During 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.
Assuntos
Antozoários/metabolismo , Recifes de Corais , Aquecimento Global/estatística & dados numéricos , Animais , Austrália , Clorofila/metabolismo , Clorofila A , Conservação dos Recursos Naturais/tendências , Aquecimento Global/prevenção & controle , Água do Mar/análise , TemperaturaRESUMO
Nearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 ('Life below Water') of the United Nations. SDG 14 seeks to secure marine sustainability by 2030. In a time of increasing social-ecological unpredictability and risk, scientists and policymakers working towards SDG 14 in the Asia-Pacific region need to know: (1) How are seascapes changing? (2) What can global society do about these changes? and (3) How can science and society together achieve sustainable seascape futures? Through a horizon scan, we identified nine emerging research priorities that clarify potential research contributions to marine sustainability in locations with high coral reef abundance. They include research on seascape geological and biological evolution and adaptation; elucidating drivers and mechanisms of change; understanding how seascape functions and services are produced, and how people depend on them; costs, benefits, and trade-offs to people in changing seascapes; improving seascape technologies and practices; learning to govern and manage seascapes for all; sustainable use, justice, and human well-being; bridging communities and epistemologies for innovative, equitable, and scale-crossing solutions; and informing resilient seascape futures through modelling and synthesis. Researchers can contribute to the sustainability of tropical seascapes by co-developing transdisciplinary understandings of people and ecosystems, emphasising the importance of equity and justice, and improving knowledge of key cross-scale and cross-level processes, feedbacks, and thresholds.
RESUMO
Current understanding of behavioural thermoregulation in aquatic ectotherms largely stems from systems such as 'shuttle boxes', which are generally limited in their capacity to test large-bodied species. Here, we introduce a controlled system that allows large aquatic ectotherms to roam freely in a tank at sub-optimal temperatures, using thermal refuges to increase body temperature to their thermal optimum as desired. Of the 10 coral grouper (Plectropomus leopardus; length â¼400â mm) implanted with thermal loggers, three fish maintained themselves at the ambient tank temperature of 17.5-20.5°C for the entire 2-4â days of the trial. Of the other seven fish, body temperature never exceeded â¼21.5°C, which was well below the temperature available in the thermal refuges (â¼31°C) and below the species' optimal temperature of â¼27°C. This study adds to a growing literature documenting an unexpected lack of behavioural thermoregulation in aquatic ectotherms in controlled, heterothermal environments.
Assuntos
Antozoários , Bass , Animais , Regulação da Temperatura Corporal , Recifes de Corais , TemperaturaRESUMO
Environmental temperature is an important determinant of physiological processes and life histories in ectotherms. Over latitudinal scales, variation in temperature has been linked to changes in life-history traits and demographic rates, with growth and mortality rates generally being greatest at low latitudes, and longevity and maximum length being greater at higher latitudes. Using the two-spined angelfish, Centropyge bispinosa, as our focal species, we compared growth patterns, growth rates, longevity, mortality, asymptotic length and maximum length across 22 reefs that span 13° of latitude within the Great Barrier Reef Marine Park (GBRMP) and the Coral Sea Marine Park (CSMP), Australia. We found no predictable latitudinal variation in mortality rates, growth patterns, growth rates, asymptotic or maximum length of C. bispinosa at regional to biogeographic scales. However, C. bispinosa consistently exhibited reduced longevity at lower, warmer latitudes within the CSMP. The greatest differences in mean maximum length of C. bispinosa were between continental (GBRMP) and oceanic (central CSMP) reefs of similar latitude, with individuals being larger on average on continental versus oceanic reefs. The lack of predictable life-history and demographic variation in C. bispinosa across a 13° latitudinal gradient within the CSMP, coupled with differences in mean maximum length between continental and oceanic reefs at similar latitudes, suggest that local environmental conditions have a greater influence than environmental temperature on the demographic rates and life-history traits of C. bispinosa.
Assuntos
Antozoários , Perciformes , Animais , Austrália , Recifes de Corais , Demografia , PeixesRESUMO
Population dynamics of organisms are shaped by the variation in phenotypic traits, often expressed even among individuals from the same cohort. For example, individual variation in the timing of ontogenetic shifts in diet and/or habitat greatly influences subsequent growth and survival of some organisms, with critical effects on population dynamics. Few studies of natural systems have, however, demonstrated that marked phenotypic variation in growth rates or body size among individuals within a modelled cohort is linked to dietary shifts and food availability. Population irruptions of the crown-of-thorns starfish are one of the foremost contributors to the global degradation of coral reefs, but causes of irruptions have been debated for decades. Here we demonstrate, based on extensive field sampling of juvenile starfish (n = 3532), that marked variation in body size among juvenile starfish is linked to an ontogenetic diet shift from coralline algae to coral. This transition in diet leads to exponential growth in juveniles and is essential for individuals to reach maturity. Because smaller individuals experience higher mortality and growth is stunted on an algal diet, the ontogenetic shift to corallivory enhances individual fitness and replenishment success. Our findings suggest that the availability of coral prey facilitates early ontogenetic diet shifts and may be fundamental in initiating population irruptions.
Assuntos
Dieta , Estrelas-do-Mar/fisiologia , Animais , Antozoários , Tamanho Corporal , Recifes de Corais , Dinâmica PopulacionalRESUMO
The disturbance regimes of ecosystems are changing, and prospects for continued recovery remain unclear. New assemblages with altered species composition may be deficient in key functional traits. Alternatively, important traits may be sustained by species that replace those in decline (response diversity). Here, we quantify the recovery and response diversity of coral assemblages using case studies of disturbance in three locations. Despite return trajectories of coral cover, the original assemblages with diverse functional attributes failed to recover at each location. Response diversity and the reassembly of trait space was limited, and varied according to biogeographic differences in the attributes of dominant, rapidly recovering species. The deficits in recovering assemblages identified here suggest that the return of coral cover cannot assure the reassembly of reef trait diversity, and that shortening intervals between disturbances can limit recovery among functionally important species.
Assuntos
Antozoários/fisiologia , Biodiversidade , Recifes de Corais , Fenótipo , Animais , Padrões de HerançaRESUMO
Animals display remarkable variation in social behaviour. However, outside of rodents, little is known about the neural mechanisms of social variation, and whether they are shared across species and sexes, limiting our understanding of how sociality evolves. Using coral reef butterflyfishes, we examined gene expression correlates of social variation (i.e. pair bonding versus solitary living) within and between species and sexes. In several brain regions, we quantified gene expression of receptors important for social variation in mammals: oxytocin (OTR), arginine vasopressin (V1aR), dopamine (D1R, D2R) and mu-opioid (MOR). We found that social variation across individuals of the oval butterflyfish, Chaetodon lunulatus, is linked to differences in OTR,V1aR, D1R, D2R and MOR gene expression within several forebrain regions in a sexually dimorphic manner. However, this contrasted with social variation among six species representing a single evolutionary transition from pair-bonded to solitary living. Here, OTR expression within the supracommissural part of the ventral telencephalon was higher in pair-bonded than solitary species, specifically in males. These results contribute to the emerging idea that nonapeptide, dopamine and opioid signalling is a central theme to the evolution of sociality across individuals, although the precise mechanism may be flexible across sexes and species.
Assuntos
Expressão Gênica , Perciformes/fisiologia , Comportamento Social , Animais , Recifes de Corais , Perciformes/genética , Telencéfalo , VasopressinasRESUMO
Understanding the spatial and environmental variation in demographic processes of fisheries target species, such as coral grouper (Genus: Plectropomus), is important for establishing effective management and conservation strategies. Herein we compare the demography of Plectropomus leopardus and P. laevis between Australia's Great Barrier Reef Marine Park (GBRMP), which has been subject to sustained and extensive fishing pressure, and the oceanic atolls of Australia's Coral Sea Marine Park (CSMP), where there is very limited fishing for reef fishes. Coral grouper length-at-age data from contemporary and historical otolith collections across 9.4 degrees of latitude showed little difference in lifetime growth between GBRMP and CSMP regions. Plectropomus laevis populations in GBRMP reefs had significantly higher rates of total mortality than populations in the CSMP. Mean maximum lengths and mean maximum ages of P. laevis were also smaller in the GBRMP than in the CSMP, even when considering populations sampled within GBRMP no-take marine reserves (NTMRs). Plectropomus leopardus, individuals were on average smaller on fished reefs than NTMRs in the GBRMP, but all other aspects of demography were broadly similar between regions despite the negligible levels of fishing pressure in the CSMP. Similarities between regions in growth profiles and length-at-age comparisons of P. laevis and P. leopardus suggest that the environmental differences between the CSMP and the GBRMP may not have significant impacts on lifetime growth. Our results show that fishing may have influenced the demography of coral grouper on the GBR, particularly for the slower growing and longer lived species, P. laevis.
Assuntos
Bass/classificação , Pesqueiros , Animais , Austrália , Bass/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Recifes de Corais , Demografia , Pesqueiros/estatística & dados numéricos , Oceanos e MaresRESUMO
Marine angelfishes (F: Pomacanthidae) are amongst the most conspicuous reef fish families inhabiting reefs on tropical and subtropical latitudes. While being disproportionately represented in the marine ornamental fish trade, only a handful of taxonomically restricted studies explored their biogeographic history and the evolution body size and trophic guilds. Here, we reconstruct the phylogenetic history for 70 pomacanthid species (85% of nominal species), based on previously published data for three nuclear and four mitochondrial markers. We use the resulting phylogenetic framework to explore the ancestral biogeography and ecological diversification of the family. Divergence times and ancestral range estimation highlight the origins of the family most likely lie in the Central Pacific region. Vicariance among ocean basins reflects the impact of the Terminal Tethyan Event and the closure of the Isthmus of Panama in the historical biogeography of Pomacanthus and Holacanthus genera. The reconstruction also uncovers ancestral colonization pathways via the Pacific Ocean into the western Atlantic waters for Holacanthus. We confirm the Indian Ocean invasion scenario previously proposed for the "acanthops" complex (genus: Centropyge). Finally, interspecific variation in body size among clades appeared to be correlated to some degree with trophic guilds, whereby 15% of variance in body size was explained by trophic modes. This suggests that the higher ecological diversification observed in the Centropyge clade might be promoted by smaller body sizes acting as an ecological novelty allowing the expansion of the genus within available niches.
Assuntos
Organismos Aquáticos/classificação , Ciclídeos/classificação , Fenômenos Ecológicos e Ambientais , Filogeografia , Animais , Teorema de Bayes , Tamanho Corporal , Calibragem , Ciclídeos/anatomia & histologia , Fósseis , Geografia , Oceano Índico , Oceano Pacífico , FilogeniaRESUMO
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait-based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system-wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small-bodied, algal-farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances.
Assuntos
Biota , Recifes de Corais , Peixes/fisiologia , Animais , Antozoários/classificação , Antozoários/fisiologia , Biodiversidade , Mudança Climática , Monitoramento Ambiental , Peixes/classificaçãoRESUMO
Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems.
Assuntos
Recifes de Corais , Pesqueiros , Aquecimento Global , Aclimatação , Animais , AntozoáriosRESUMO
Functional responses describing how foraging rates change with respect to resource density are central to our understanding of interspecific interactions. Competitive interactions are an important determinant of foraging rates; however, the relationship between the exploitation and interference components of competition has received little empirical or theoretical consideration. Moreover, little is known about the relationship between aggressive behavioural interactions and interference competition. Using a natural gradient of consumer and resource densities, we empirically examine how aggressiveness relates to consumer-consumer encounter rates and foraging for four species of Chaetodon reef fish spanning a range of dietary niche breadths. The probability of aggression was most strongly associated with both total consumer and resource densities. In contrast, total encounter rates were best predicted by conspecific consumer density, and were highest for the most specialised consumer (Chaetodon trifascialis), not the most aggressive (Chaetodon baronessa). The most specialised consumer, not the most aggressive, also exhibited the largest reduction in foraging rates with increasing consumer density. Our results support the idea of a positive link between the exploitation and interference components of competition for the most specialised consumer. Moreover, our results caution against inferring the presence of ecological interactions (competition) from observations of behaviour (aggression and agonism) alone.
Assuntos
Agressão , Peixes , Animais , Antozoários , Dieta , Ecossistema , PerciformesRESUMO
Christmas Island is located at the overlap of the Indian and Pacific Ocean marine provinces and is a hot spot for marine hybridization. Here, we evaluate the ecological framework and genetic consequences of hybridization between butterflyfishes Chaetodon guttatissimus and Chaetodon punctatofasciatus. Further, we compare our current findings to those from a previous study of hybridization between Chaetodon trifasciatus and Chaetodon lunulatus. For both species groups, habitat and dietary overlap between parental species facilitate frequent heterospecific encounters. Low abundance of potential mates promotes heterospecific pair formation and the breakdown of assortative mating. Despite similarities in ecological frameworks, the population genetic signatures of hybridization differ between the species groups. Mitochondrial and nuclear data from C. guttatissimus × C. punctatofasciatus (1% divergence at cyt b) show bidirectional maternal contributions and relatively high levels of introgression, both inside and outside the Christmas Island hybrid zone. In contrast, C. trifasciatus × C. lunulatus (5% cyt b divergence) exhibit unidirectional mitochondrial inheritance and almost no introgression. Back-crossing of hybrid C. guttatissimus × C. punctatofasciatus and parental genotypes may eventually confound species-specific signals within the hybrid zone. In contrast, hybrids of C. trifasciatus and C. lunulatus may coexist with and remain genetically distinct from the parents. Our results, and comparisons with hybridization studies in other reef fish families, indicate that genetic distance between hybridizing species may be a factor influencing outcomes of hybridization in reef fish, which is consistent with predictions from terrestrially derived hybridization theory.
Assuntos
Evolução Molecular , Peixes/genética , Hibridização Genética , Animais , Austrália , Núcleo Celular/genética , Recifes de Corais , DNA Mitocondrial/genética , Genética Populacional , Genótipo , Repetições de Microssatélites , Dados de Sequência Molecular , FilogeniaRESUMO
Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas.