RESUMO
Correction for 'Depth-resolved oxidational studies of Be/Al periodic multilayers investigated by X-ray photoelectron spectroscopy' by Niranjan Kumar et al., Phys. Chem. Chem. Phys., 2023, 25, 1205-1213, https://doi.org/10.1039/D2CP04778K.
RESUMO
The quantification of surface and subsurface oxidation of Be/Al periodic multilayer mirrors due to exposure in the ambient atmosphere was investigated by depth-resolved X-ray photoelectron spectroscopy. The contribution of oxidation was lower for the thicker layer of Al in the periodic structures since the surface was less chemically reactive for the oxidation. This was investigated by finding the depth-resolved slope of the intensity ratio of metal/oxides (Be/BeOx and Al/AlOx) by analyzing the chemical shift of Al 1s and Be 1s photoelectrons. Furthermore, a well-resolved doublet chemical shift in the O 1s spectra indicated the formation of BeOx/AlOx and BeOH/AlOH oxides. The investigation showed that the subsurface and surface regions were dominated by metal-hydroxide (BeOH/AlOH) and metal-oxide (BeOx/AlOx) bonding, respectively, analyzed by the depth-resolved chemical shifts.
RESUMO
A Ta2O5-anchored-piperidine-4-carboxylic acid (PPCA) nanoparticle has been synthesized and characterized. It was then used as a highly effective nanocatalyst for the synthesis of quinolin-2(1H)-one derivatives through CO bond functionalization. The special advantage of this heterogeneous solid catalyst is the reusability of the catalyst for up to five cycles without any noticeable reduction in product yields. In comparison, healthy reaction profiles, wide substrate scope, excellent yields and easy workup conditions are the notable highlights of this approach. All the compounds were tested for their anticancer activity against MCF-7 (human breast), HepG2 (human liver), HCT116 (human colorectal), and PC-3 (human prostate) cancer cell lines with the MTT assay. All the compounds were shown to have moderate to good inhibitory effects on tested cancer cell lines. Besides, compounds 5b, 5c and 5d showed good selectivity against epidermal growth factor receptor-tyrosine kinase (EGFR-TK). Molecular docking results showed that active compounds showed a good affinity towards EGFR kinase (PDB ID: 6V6O) by forming two hydrogen bonds with Cys-797 and Tyr-801. All the compounds were screened for computational ADMET and Lipinski analysis.
Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Estrutura Molecular , Tamanho da Partícula , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-AtividadeRESUMO
Using Cu(I)-catalyzed cycloaddition of alkyne and azide reaction (CuAAC), a series of novel 1,2,3-triazole based imidazole derivatives (3a-e) have been synthesized. The synthesized molecules were characterized by spectroscopic techniques such as 1H NMR, 13C NMR, mass and elemental analysis. Antitubercular activity (anti-TB) against Mycobacterium tuberculosis H37Rv (Mtb) and cytotoxic activity against the mammalian Vero cell line was screened for the synthesized compounds. The compounds 3d and 3e displayed potent in vitro antitubercular activity and may serve as a lead for further optimization. Besides, the experimental findings were in line with the results of molecular docking. Also, the synthesized compounds have also been analyzed for ADME properties and the experimental finding facilitates the development of new and more potent anti-TB agents in this series in the future. Using fluorescence and UV-vis absorption spectroscopy, the binding interaction of compounds (3d and 3e) with human serum albumin (HSA) was investigated. The results showed that, as a result of HSA-compound complex, the fluorescence quenching of HSA by test compounds was a static quenching process. According to Forster's theory, energy transfer efficiency is calculated.
Assuntos
Antituberculosos/farmacologia , Imidazóis/farmacologia , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Albumina Sérica Humana/química , Triazóis/farmacologia , Animais , Antituberculosos/síntese química , Antituberculosos/química , Sítios de Ligação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/química , Células VeroRESUMO
The in vitro anticancer efficacy of a new series of quinazoline-based thiazole derivatives was explored. Three cancer cell lines, MCF-7, HepG2, and A548, as well as the normal Vero cell lines, were tested employing the synthesized quinazoline-based thiazole compounds (4a-j). All of these compounds showed a moderate to significant cytotoxic impact that would have been noticeable and, in some cases, much more pronounced than the widely used drug erlotinib. For the MCF-7, HepG2, and A549 cell lines, respectively, the IC50 values of compound 4i were 2.86, 5.91, and 14.79 µM while those of compound 4j were 3.09, 6.87, and 17.92 µM. For their in vitro inhibitory effects against different EGFR kinases, such as the wild-type, L858R/T790 M, and L858R/T790 M/C797S, all the synthesized compounds were tested. The IC50 values for compound 4f against the wild-type, L858R/T790 M, and L858R/T790 M/C797S mutant EGFR kinases were 2.17, 2.81, and 3.62 nM, respectively. Investigations on the molecular docking of significant molecules indicated potential mechanisms of binding into the EGFR kinase active sites. By using in-silico simulations, compounds' putative drug-like qualities were verified. Finally, it has been shown that the newly synthesized compounds 4i and 4j are good candidates and beneficial for future design, optimization, and research to build more potent and selective EGFR kinase inhibitors with higher anticancer activity.