Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(4): 554-569, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36623837

RESUMO

The thalamic reticular nucleus (TRN) is crucial for the modulation of sleep-related oscillations. The caudal and rostral subpopulations of the TRN exert diverse activities, which arise from their interconnectivity with all thalamic nuclei, as well as other brain regions. Despite the recent characterization of the functional and genetic heterogeneity of the TRN, the implications of this heterogeneity for sleep regulation have not been assessed. Here, using a combination of optogenetics and electrophysiology in C57BL/6 mice, we demonstrate that caudal and rostral TRN modulations are associated with changes in cortical alpha and delta oscillations and have distinct effects on sleep stability. Tonic silencing of the rostral TRN elongates sleep episodes, while tonic silencing of the caudal TRN fragments sleep. Overall, we show evidence of distinct roles exerted by the rostral and caudal TRN in sleep regulation and oscillatory activity.


Assuntos
Sono , Núcleos Talâmicos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Núcleos Talâmicos/fisiologia , Sono/fisiologia , Fenômenos Eletrofisiológicos
2.
J Neuroinflammation ; 16(1): 18, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691477

RESUMO

BACKGROUND: Important insight into the mechanisms through which gene-environmental interactions cause schizophrenia can be achieved through preclinical studies combining prenatal immune stimuli with disease-related genetic risk modifications. Accumulating evidence associates JNK signalling molecules, including MKK7/MAP2K7, with genetic risk. We tested the hypothesis that Map2k7 gene haploinsufficiency in mice would alter the prenatal immune response to the viral mimetic polyriboinosinic-polyribocytidylic acid (polyI:C), specifically investigating the impact of maternal versus foetal genetic variants. METHODS: PolyI:C was administered to dams (E12.5), and cytokine/chemokine levels were measured 6 h later, in maternal plasma, placenta and embryonic brain. RESULTS: PolyI:C dramatically elevated maternal plasma levels of most cytokines/chemokines. Induction of IL-1ß, IL-2, IL-10, IL-12, TNF-α and CXCL3 was enhanced, while CCL5 was suppressed, in Map2k7 hemizygous (Hz) dams relative to controls. Maternal polyI:C administration also increased embryonic brain chemokines, influenced by both maternal and embryonic genotype: CCL5 and CXCL10 levels were higher in embryonic brains from Map2k7 dams versus control dams; for CCL5, this was more pronounced in Map2k7 Hz embryos. Placental CXCL10 and CXCL12 levels were also elevated by polyI:C, the former enhanced and the latter suppressed, in placentae from maternal Map2k7 Hzs relative to control dams receiving polyI:C. CONCLUSIONS: The results demonstrate JNK signalling as a mediator of MIA effects on the foetus. Since both elevated CXCL10 and supressed CXCL12 compromise developing GABAergic interneurons, the results support maternal immune challenge contributing to schizophrenia-associated neurodevelopmental abnormalities. The influence of Map2k7 on cytokine/chemokine induction converges the genetic and environmental aspects of schizophrenia, and the overt influence of maternal genotype offers an intriguing new insight into modulation of embryonic neurodevelopment by genetic risk.


Assuntos
Indutores de Interferon/toxicidade , Sistema de Sinalização das MAP Quinases/fisiologia , Poli I-C/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Esquizofrenia/etiologia , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Esquizofrenia/sangue , Fator A de Crescimento do Endotélio Vascular
3.
Cereb Cortex ; 24(2): 452-64, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23081884

RESUMO

Compromised functional integration between cerebral subsystems and dysfunctional brain network organization may underlie the neurocognitive deficits seen in psychiatric disorders. Applying topological measures from network science to brain imaging data allows the quantification of complex brain network connectivity. While this approach has recently been used to further elucidate the nature of brain dysfunction in schizophrenia, the value of applying this approach in preclinical models of psychiatric disease has not been recognized. For the first time, we apply both established and recently derived algorithms from network science (graph theory) to functional brain imaging data from rats treated subchronically with the N-methyl-D-aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). We show that subchronic PCP treatment induces alterations in the global properties of functional brain networks akin to those reported in schizophrenia. Furthermore, we show that subchronic PCP treatment induces compromised functional integration between distributed neural systems, including between the prefrontal cortex and hippocampus, that have established roles in cognition through, in part, the promotion of thalamic dysconnectivity. We also show that subchronic PCP treatment promotes the functional disintegration of discrete cerebral subsystems and also alters the connectivity of neurotransmitter systems strongly implicated in schizophrenia. Therefore, we propose that sustained NMDA receptor hypofunction contributes to the pathophysiology of dysfunctional brain network organization in schizophrenia.


Assuntos
Encéfalo/fisiopatologia , Receptores de N-Metil-D-Aspartato/metabolismo , Algoritmos , Animais , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Radioisótopos de Carbono , Desoxiglucose/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/diagnóstico por imagem , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Fenciclidina/farmacologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Cintilografia , Ratos , Ratos Endogâmicos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Esquizofrenia/fisiopatologia , Processamento de Sinais Assistido por Computador , Integração de Sistemas , Tálamo/diagnóstico por imagem , Tálamo/efeitos dos fármacos , Tálamo/fisiopatologia
4.
Hum Mol Genet ; 21(22): 4910-21, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22899651

RESUMO

Schizophrenia is a debilitating psychiatric disease with a strong genetic contribution, potentially linked to altered glutamatergic function in brain regions such as the prefrontal cortex (PFC). Here, we report converging evidence to support a functional candidate gene for schizophrenia. In post-mortem PFC from patients with schizophrenia, we detected decreased expression of MKK7/MAP2K7-a kinase activated by glutamatergic activity. While mice lacking one copy of the Map2k7 gene were overtly normal in a variety of behavioural tests, these mice showed a schizophrenia-like cognitive phenotype of impaired working memory. Additional support for MAP2K7 as a candidate gene came from a genetic association study. A substantial effect size (odds ratios: ~1.9) was observed for a common variant in a cohort of case and control samples collected in the Glasgow area and also in a replication cohort of samples of Northern European descent (most significant P-value: 3 × 10(-4)). While some caution is warranted until these association data are further replicated, these results are the first to implicate the candidate gene MAP2K7 in genetic risk for schizophrenia. Complete sequencing of all MAP2K7 exons did not reveal any non-synonymous mutations. However, the MAP2K7 haplotype appeared to have functional effects, in that it influenced the level of expression of MAP2K7 mRNA in human PFC. Taken together, the results imply that reduced function of the MAP2K7-c-Jun N-terminal kinase (JNK) signalling cascade may underlie some of the neurochemical changes and core symptoms in schizophrenia.


Assuntos
Predisposição Genética para Doença , Variação Genética , MAP Quinase Quinase 7/genética , Esquizofrenia/genética , Alelos , Animais , Estudos de Casos e Controles , Expressão Gênica , Genótipo , Humanos , Desequilíbrio de Ligação , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal/metabolismo
5.
Commun Biol ; 6(1): 557, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225770

RESUMO

Autism spectrum disorders are more common in males, and have a substantial genetic component. Chromosomal 16p11.2 deletions in particular carry strong genetic risk for autism, yet their neurobiological impact is poorly characterised, particularly at the integrated systems level. Here we show that mice reproducing this deletion (16p11.2 DEL mice) have reduced GABAergic interneuron gene expression (decreased parvalbumin mRNA in orbitofrontal cortex, and male-specific decreases in Gad67 mRNA in parietal and insular cortex and medial septum). Metabolic activity was increased in medial septum, and in its efferent targets: mammillary body and (males only) subiculum. Functional connectivity was altered between orbitofrontal, insular and auditory cortex, and between septum and hippocampus/subiculum. Consistent with this circuit dysfunction, 16p11.2 DEL mice showed reduced prepulse inhibition, but enhanced performance in the continuous performance test of attentional ability. Level 1 autistic individuals show similarly heightened performance in the equivalent human test, also associated with parietal, insular-orbitofrontal and septo-subicular dysfunction. The data implicate cortical and septal GABAergic dysfunction, and resulting connectivity changes, as the cause of pre-attentional and attentional changes in autism.


Assuntos
Córtex Auditivo , Transtorno do Espectro Autista , Humanos , Animais , Masculino , Camundongos , Estruturas Cromossômicas , Deleção Cromossômica , Transtorno do Espectro Autista/genética , RNA Mensageiro
6.
Dis Model Mech ; 15(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35275161

RESUMO

In schizophrenia, subjects show reduced ability to evaluate and update risk/reward contingencies, showing correspondingly suboptimal performance in the Iowa gambling task. JNK signalling gene variants are associated with schizophrenia risk, and JNK modulates aspects of cognition. We therefore studied the performance of mice hemizygous for genetic deletion of the JNK activator MKK7 (Map2k7+/- mice) in a touchscreen version of the Iowa gambling task, additionally incorporating a novel contingency-switching stage. Map2k7+/- mice performed slightly better than wild-type (WT) littermates in acquisition and performance of the task. Although Map2k7+/- mice adapted well to subtle changes in risk/reward contingencies, they were profoundly impaired when the positions of 'best' and 'worst' choice selections were switched, and still avoided the previous 'worst' choice location weeks after the switch. This demonstrates a precise role for MKK7-JNK signalling in flexibility of risk/reward assessment and suggests that genetic variants affecting this molecular pathway may underlie impairment in this cognitive domain in schizophrenia. Importantly, this new contingency shift adaptation of the rodent touchscreen gambling task has translational utility for characterising these cognitive subprocesses in models of neuropsychiatric disorders.


Assuntos
Jogo de Azar , Esquizofrenia , Animais , Cognição , Jogo de Azar/genética , Jogo de Azar/psicologia , MAP Quinase Quinase 7/genética , Camundongos , Recompensa , Roedores , Esquizofrenia/genética
7.
Mol Neurobiol ; 59(5): 2874-2893, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35233718

RESUMO

Perineuronal nets (PNNs) are specialised extracellular matrix structures which preferentially enwrap fast-spiking (FS) parvalbumin interneurons and have diverse roles in the cortex. PNN maturation coincides with closure of the critical period of cortical plasticity. We have previously demonstrated that BDNF accelerates interneuron development in a c-Jun-NH2-terminal kinase (JNK)-dependent manner, which may involve upstream thousand-and-one amino acid kinase 2 (TAOK2). Chondroitinase-ABC (ChABC) enzymatic digestion of PNNs reportedly reactivates 'juvenile-like' plasticity in the adult CNS. However, the mechanisms involved are unclear. We show that ChABC produces an immature molecular phenotype in cultured cortical neurons, corresponding to the phenotype prior to critical period closure. ChABC produced different patterns of PNN-related, GABAergic and immediate early (IE) gene expression than well-characterised modulators of mature plasticity and network activity (GABAA-R antagonist, bicuculline, and sodium-channel blocker, tetrodotoxin (TTX)). ChABC downregulated JNK activity, while this was upregulated by bicuculline. Bicuculline, but not ChABC, upregulated Bdnf expression and ERK activity. Furthermore, we found that BDNF upregulation of semaphorin-3A and IE genes was TAOK mediated. Our data suggest that ChABC heightens structural flexibility and network disinhibition, potentially contributing to 'juvenile-like' plasticity. The molecular phenotype appears to be distinct from heightened mature synaptic plasticity and could relate to JNK signalling. Finally, we highlight that BDNF regulation of plasticity and PNNs involves TAOK signalling.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Interneurônios , Bicuculina , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Matriz Extracelular/metabolismo , Interneurônios/metabolismo , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo
8.
Schizophr Bull ; 47(3): 812-826, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33067994

RESUMO

Schizophrenia (SZ) is a neurodevelopmental disorder caused by the interaction of genetic and environmental risk factors. One of the strongest genetic risk variants is duplication (DUP) of chr.16p11.2. SZ is characterized by cortical gamma-amino-butyric acid (GABA)ergic interneuron dysfunction and disruption to surrounding extracellular matrix structures, perineuronal nets (PNNs). Developmental maturation of GABAergic interneurons, and also the resulting closure of the critical period of cortical plasticity, is regulated by brain-derived neurotrophic factor (BDNF), although the mechanisms involved are unknown. Here, we show that BDNF promotes GABAergic interneuron and PNN maturation through JNK signaling. In mice reproducing the 16p11.2 DUP, where the JNK upstream activator Taok2 is overexpressed, we find that JNK is overactive and there are developmental abnormalities in PNNs, which persist into adulthood. Prefrontal cortex parvalbumin (PVB) expression is reduced, while PNN intensity is increased. Additionally, we report a unique role for TAOK2 signaling in the regulation of PVB interneurons. Our work implicates TAOK2-JNK signaling in cortical interneuron and PNN development, and in the responses to BDNF. It also demonstrates that over-activation of this pathway in conditions associated with SZ risk causes long-lasting disruption in cortical interneurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cromossomos Humanos Par 16/genética , Matriz Extracelular/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Duplicação Cromossômica , Modelos Animais de Doenças , Embrião de Mamíferos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/metabolismo
9.
J Psychopharmacol ; 35(10): 1265-1276, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34304635

RESUMO

BACKGROUND: Aside from regulating circadian rhythms, melatonin also affects cognitive processes, such as alertness, and modulates the brain circuitry underlying psychiatric diseases, such as depression, schizophrenia and bipolar disorder, via mechanisms that are not fully clear. In particular, while melatonin MT1 receptors are thought primarily to mediate the circadian effects of the hormone, the contribution of the MT2 receptor to melatonin actions remains enigmatic. AIMS: To characterise the contribution of MT2 receptors to melatonin's effects on cognition and anxiety/sociability. METHODS: Mice with a genetic deletion of the MT2 receptor, encoded by the Mtnr1b gene, were compared with wild-type littermates for performance in a translational touchscreen version of the continuous performance task (CPT) to assess attentional processes and then monitored over 3 days in an ethological home-cage surveillance system. RESULTS: Mtnr1b knockout (KO) mice were able to perform at relatively normal levels in the CPT. However, they showed consistent evidence of more liberal/risky responding strategies relative to control mice, with increases in hit rates and false alarm rates, which were maintained even when the cognitive demands of the task were increased. Assessment in the home-cage monitoring system revealed that female Mtnr1b KO mice have increased anxiety levels, whereas male Mtnr1b KO mice show increased sociability. CONCLUSIONS: The results confirm that the MT2 receptor plays a role in cognition and also modulates anxiety and social interactions. These data provide new insights into the functions of endogenous melatonin and will inform future drug development strategies focussed on the MT2 receptor.


Assuntos
Ansiedade/fisiopatologia , Atenção/fisiologia , Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Animais , Ansiedade/genética , Cognição/fisiologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais , Interação Social
10.
Genes Brain Behav ; 20(2): e12710, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33078498

RESUMO

The GPR88 orphan G protein-coupled receptor is expressed throughout the striatum, being preferentially localised in medium spiny neurons. It is also present in lower densities in frontal cortex and thalamus. Rare mutations in humans suggest a role in cognition and motor function, while common variants are associated with psychosis. Here we evaluate the influence of genetic deletion of GPR88 upon performance in translational tasks interrogating motivation, reward evaluation and cognitive function. In an automated radial arm maze 'N-back' working memory task, Gpr88 KO mice showed impaired correct responding, suggesting a role for GPR88 receptors in working memory circuitry. Associative learning performance was similar to wild-type controls in a touchscreen task but performance was impaired at the reversal learning stage, suggesting cognitive inflexibility. Gpr88 KO mice showed higher breakpoints, reduced latencies and lengthened session time in a progressive ratio task consistent with enhanced motivation. Simultaneously, locomotor hyperactivity was apparent in this task, supporting previous findings of actions of GPR88 in a cortico-striatal-thalamic motor loop. Evidence for a role of GPR88 in reward processing was demonstrated in a touchscreen-based equivalent of the Iowa gambling task. Although both Gpr88 KO and wild-type mice showed a preference for an optimum contingency choice, Gpr88 KO mice selected more risky choices at the expense of more advantageous lower risk options. Together these novel data suggest that striatal GPR88 receptors influence activity in a range of procedures integrated by prefrontal, orbitofrontal and anterior cingulate cortico-striatal-thalamic loops leading to altered cognitive, motivational and reward evaluation processes.


Assuntos
Cognição , Memória de Curto Prazo , Receptores Acoplados a Proteínas G/genética , Recompensa , Animais , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/metabolismo , Córtex Motor/fisiologia , Assunção de Riscos , Tálamo/metabolismo , Tálamo/fisiologia
11.
Sci Rep ; 10(1): 12303, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704009

RESUMO

There are no current treatments for autism, despite its high prevalence. Deletions of chromosome 16p11.2 dramatically increase risk for autism, suggesting that mice with an equivalent genetic rearrangement may offer a valuable model for the testing of novel classes of therapeutic drug. 16p11.2 deletion (16p11.2 DEL) mice and wild-type controls were assessed using an ethological approach, with 24 h monitoring of activity and social interaction of groups of mice in a home-cage environment. The ability of the excitation/inhibition modulator N-acetyl cysteine (NAC) and the 5-HT1B/1D/1F receptor agonist eletriptan to normalise the behavioural deficits observed was tested. 16p11.2 DEL mice exhibited largely normal behaviours, but, following the stress of an injection, showed hyperlocomotion, reduced sociability, and a strong anxiolytic phenotype. The hyperactivity and reduced sociability, but not the suppressed anxiety, were effectively attenuated by both NAC and eletriptan. The data suggest that 16p11.2 DEL mice show an autism-relevant phenotype that becomes overt after an acute stressor, emphasising the importance of gene-environmental interactions in phenotypic analysis. Further, they add to an emerging view that NAC, or 5-HT1B/1D/1F receptor agonist treatment, may be a promising strategy for further investigation as a future treatment.


Assuntos
Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Deleção Cromossômica , Cromossomos de Mamíferos/genética , Interação Gene-Ambiente , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Ansiedade/genética , Transtorno Autístico/fisiopatologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Fenótipo , Comportamento Social , Interação Social
12.
J Psychopharmacol ; 34(7): 709-715, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32438848

RESUMO

BACKGROUND: Rodent behavioural assays are widely used to delineate the mechanisms of psychiatric disorders and predict the efficacy of drug candidates. Conventional behavioural paradigms are restricted to short time windows and involve transferring animals from the homecage to unfamiliar apparatus which induces stress. Additionally, factors including environmental perturbations, handling and the presence of an experimenter can impact behaviour and confound data interpretation. To improve welfare and reproducibility these issues must be resolved. Automated homecage monitoring offers a more ethologically relevant approach with reduced experimenter bias. AIM: To evaluate the effectiveness of an automated homecage system at detecting locomotor and social alterations induced by phencyclidine (PCP) in group-housed rats. PCP is an N-methyl-D-aspartate (NMDA) receptor antagonist commonly utilised to model aspects of schizophrenia. METHODS: Rats housed in groups of three were implanted with radio frequency identification (RFID) tags. Each homecage was placed over a RFID reader baseplate for the automated monitoring of the social and locomotor activity of each individual rat. For all rats, we acquired homecage data for 24 h following administration of both saline and PCP (2.5 mg/kg). RESULTS: PCP resulted in significantly increased distance travelled from 15 to 60 min post injection. Furthermore, PCP significantly enhanced time spent isolated from cage mates and this asociality occured from 60 to 105 min post treatment. CONCLUSIONS: Unlike conventional assays, in-cage monitoring captures the temporal duration of drug effects on multiple behaviours in the same group of animals. This approach could benefit psychiatric preclinical drug discovery through improved welfare and increased between-laboratory replicability.


Assuntos
Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Fenciclidina/farmacologia , Animais , Transtornos Dissociativos/psicologia , Masculino , Dispositivo de Identificação por Radiofrequência , Ratos , Reprodutibilidade dos Testes , Comportamento Social , Fatores de Tempo
13.
Cell Rep ; 31(3): 107536, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320645

RESUMO

Chromosome 16p11.2 duplications dramatically increase risk for schizophrenia, but the mechanisms remain largely unknown. Here, we show that mice with an equivalent genetic mutation (16p11.2 duplication mice) exhibit impaired hippocampal-orbitofrontal and hippocampal-amygdala functional connectivity. Expression of schizophrenia-relevant GABAergic cell markers (parvalbumin and calbindin) is selectively decreased in orbitofrontal cortex, while somatostatin expression is decreased in lateral amygdala. When 16p11.2 duplication mice are tested in cognitive tasks dependent on hippocampal-orbitofrontal connectivity, performance is impaired in an 8-arm maze "N-back" working memory task and in a touchscreen continuous performance task. Consistent with hippocampal-amygdala dysconnectivity, deficits in ethologically relevant social behaviors are also observed. Overall, the cellular/molecular, brain network, and behavioral alterations markedly mirror those observed in schizophrenia patients. Moreover, the data suggest that 16p11.2 duplications selectively impact hippocampal-amygdaloid-orbitofrontal circuitry, supporting emerging ideas that dysfunction in this network is a core element of schizophrenia and defining a neural circuit endophenotype for the disease.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtorno Autístico/genética , Transtornos Cromossômicos/genética , Endofenótipos/metabolismo , Hipocampo/fisiopatologia , Deficiência Intelectual/genética , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/genética , Animais , Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Feminino , Humanos , Masculino , Camundongos
14.
Schizophr Bull ; 46(1): 211-223, 2020 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-31219577

RESUMO

c-Jun N-terminal kinase (JNK) signaling contributes to functional plasticity in the brain and cognition. Accumulating evidence implicates a role for MAP kinase kinase 7 (MAP2K7), a JNK activator encoded by the Map2k7 gene, and other JNK pathway components in schizophrenia (ScZ). Mice haploinsufficient for Map2k7 (Map2k7+/- mice) display ScZ-relevant cognitive deficits, although the mechanisms are unclear. Here we show that Map2k7+/- mice display translationally relevant alterations in brain function, including hippocampal and mesolimbic system hypermetabolism with a contrasting prefrontal cortex (PFC) hypometabolism, reminiscent of patients with ScZ. In addition Map2k7+/- mice show alterations in functional brain network connectivity paralleling those reported in early ScZ, including PFC and hippocampal hyperconnectivity and compromised mesolimbic system functional connectivity. We also show that although the cerebral metabolic response to ketamine is preserved, the response to dextroamphetamine (d-amphetamine) is significantly attenuated in Map2k7+/- mice, supporting monoamine neurotransmitter system dysfunction but not glutamate/NMDA receptor (NMDA-R) dysfunction as a consequence of Map2k7 haploinsufficiency. These effects are mirrored behaviorally with an attenuated impact of d-amphetamine on sensorimotor gating and locomotion, whereas similar deficits produced by ketamine are preserved, in Map2k7+/- mice. In addition, Map2k7+/- mice show a basal hyperactivity and sensorimotor gating deficit. Overall, these data suggest that Map2k7 modifies brain and monoamine neurotransmitter system function in a manner relevant to the positive and cognitive symptoms of ScZ.


Assuntos
Comportamento Animal/fisiologia , Encéfalo , Conectoma , Endofenótipos , Locomoção/fisiologia , MAP Quinase Quinase 7 , Rede Nervosa , Esquizofrenia , Filtro Sensorial/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Dextroanfetamina/farmacologia , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Haploinsuficiência , Ketamina/farmacologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia
15.
Psychopharmacology (Berl) ; 198(1): 37-49, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18427784

RESUMO

RATIONALE: We have previously demonstrated that subchronic (five daily administrations of 2.6 mg/kg PCP) and chronic intermittent administration of 2.6 mg/kg PCP to rats produces hypofrontality and other neurochemical changes akin to schizophrenia pathology (Cochran et al., Neuropsychopharmacology, 28:265-275, 2003). OBJECTIVES: We sought to determine whether behavioral alterations related to discrete aspects of schizophrenia are also induced by these PCP treatment regimes. MATERIALS AND METHODS: Following administration of vehicle or PCP according to the protocols described above, rats were assessed for attentional set shifting ability, prepulse inhibition (PPI), or social interaction and the locomotor response to a challenge dose of amphetamine. RESULTS: Ability to shift attentional set was impaired 72 h after the last PCP administration following the subchronic and chronic intermittent treatment regimes. PPI was disrupted after each acute administration of PCP in animals under the subchronic treatment regime. However, PPI deficits were not sustained 72 h after the last of five daily administrations. In subchronic and chronic PCP treated animals, no change was found in social interaction behavior, and there was little change in baseline or amphetamine-stimulated locomotor activity, employed as an indicator of dopaminergic hyperfunction. CONCLUSIONS: The temporally distinct behavioral effects of these PCP treatment regimes suggest that PPI deficits relate directly to acute NMDA receptor antagonism, whereas the more enduring set shifting deficits relate to the longer term consequences of NMDA receptor blockade. Therefore, these subchronic and chronic PCP treatment regimes produce hypofrontality (Cochran et al., Neuropsychopharmacology, 28:265-275, 2003) and associated prefrontal cortex-dependent deficits in behavioral flexibility which mirror core deficits in schizophrenia.


Assuntos
Atenção/efeitos dos fármacos , Alucinógenos/farmacologia , Fenciclidina/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Anfetamina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/fisiopatologia , Discriminação Psicológica/efeitos dos fármacos , Dopamina/fisiologia , Lobo Frontal/fisiologia , Hipercinese/induzido quimicamente , Hipercinese/psicologia , Masculino , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/fisiologia , Ratos , Ratos Long-Evans , Psicologia do Esquizofrênico , Comportamento Social
16.
Curr Top Behav Neurosci ; 40: 295-323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721851

RESUMO

Schizophrenia is considered to develop as a consequence of genetic and environmental factors impacting on brain neural systems and circuits during vulnerable neurodevelopmental periods, thereby resulting in symptoms in early adulthood. Understanding of the impact of schizophrenia risk factors on brain biology and behaviour can help in identifying biologically relevant pathways that are attractive for informing clinical studies and biomarker development. In this chapter, we emphasize the importance of adopting a reciprocal forward and reverse translation approach that is iteratively updated when additional new information is gained, either preclinically or clinically, for offering the greatest opportunity for discovering panels of biomarkers for the diagnosis, prognosis and treatment of schizophrenia. Importantly, biomarkers for identifying those at risk may inform early intervention strategies prior to the development of schizophrenia.Given the emerging nature of this approach in the field, this review will highlight recent research of preclinical biomarkers in schizophrenia that show the most promise for informing clinical needs with an emphasis on relevant imaging, electrophysiological, cognitive behavioural and biochemical modalities. The implementation of this reciprocal translational approach is exemplified firstly by the production and characterization of preclinical models based on the glutamate hypofunction hypothesis, genetic and environmental risk factors for schizophrenia (reverse translation), and then the recent clinical recognition of the thalamic reticular thalamus (TRN) as an important locus of brain dysfunction in schizophrenia as informed by preclinical findings (forward translation).


Assuntos
Biomarcadores , Esquizofrenia , Encéfalo/fisiopatologia , Ácido Glutâmico , Humanos , Esquizofrenia/diagnóstico
17.
J Neurosci Methods ; 308: 1-5, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033387

RESUMO

BACKGROUND: Primary neuronal cultures underpin diverse neuroscience experiments, including various protein analysis techniques, such as Western blotting, whereby protein extraction from cultured neurons is required. During immunoblotting experiments, we encountered problems due to a highly-abundant protein of 65-70 KDa present in the cell extracts, that interfered with total protein estimation, and immunodetection of target proteins of similar size. Previous research has suggested that serum proteins, specifically albumin, contained within commonly-used culture media, can bind to, or be adsorbed by, generic cell culture plasticware. This residual albumin may then be extracted along with cell proteins. NEW METHOD: We made simple modifications to wash steps of traditional cell lysis/extraction protocols. RESULTS: We report that a substantial amount of albumin, accumulated from the standard culture media, is extracted from primary neuronal cultures along with the cellular contents. This contamination can be reduced, without changing the culture conditions, by modifying wash procedures. COMPARISON WITH EXISTING METHODS: Accumulated albumin from neuronal culture media, in amounts equivalent to cellular contents, can distort data from total protein assays and from the immunoreactive signal from nearby bands on Western blots. By altering wash protocols during protein extraction, these problems can be ameliorated. CONCLUSIONS: We suggest that the standard extended culture periods for primary neuronal cultures, coupled with the requirement for successive medium changes, may leave them particularly susceptible to cumulative albumin contamination from the culture media used. Finally, we propose the implementation of simple alterations to wash steps in protein extraction protocols which can ameliorate this interference.


Assuntos
Immunoblotting/métodos , Neurônios/metabolismo , Cultura Primária de Células/métodos , Albumina Sérica/análise , Animais , Meios de Cultura/análise , Immunoblotting/instrumentação , Camundongos Endogâmicos C57BL
18.
Exp Neurol ; 308: 35-46, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29944857

RESUMO

Protein S-acylation is a widespread post-translational modification that regulates the trafficking and function of a diverse array of proteins. This modification is catalysed by a family of twenty-three zDHHC enzymes that exhibit both specific and overlapping substrate interactions. Mutations in the gene encoding zDHHC9 cause mild-to-moderate intellectual disability, seizures, speech and language impairment, hypoplasia of the corpus callosum and reduced volume of sub-cortical structures. In this study, we have undertaken behavioural phenotyping, magnetic resonance imaging (MRI) and isolation of S-acylated proteins to investigate the effect of disruption of the Zdhhc9 gene in mice in a C57BL/6 genetic background. Zdhhc9 mutant male mice exhibit a range of abnormalities compared with their wild-type littermates: altered behaviour in the open-field test, elevated plus maze and acoustic startle test that is consistent with a reduced anxiety level; a reduced hang time in the hanging wire test that suggests underlying hypotonia but which may also be linked to reduced anxiety; deficits in the Morris water maze test of hippocampal-dependent spatial learning and memory; and a 36% reduction in corpus callosum volume revealed by MRI. Surprisingly, membrane association and S-acylation of H-Ras was not disrupted in either whole brain or hippocampus of Zdhhc9 mutant mice, suggesting that other substrates of this enzyme are linked to the observed changes. Overall, this study highlights a key role for zDHHC9 in brain development and behaviour, and supports the utility of the Zdhhc9 mutant mouse line to investigate molecular and cellular changes linked to intellectual disability and other deficits in the human population.


Assuntos
Aciltransferases/genética , Encéfalo/patologia , Deficiência Intelectual/genética , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Neurosci Biobehav Rev ; 30(5): 680-95, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16574226

RESUMO

Marijuana use has been associated with disordered cognition across several domains influenced by the prefrontal cortex (PFC). Here, we review the contribution of preclinical research to understanding the effects of cannabinoids on cognitive ability, and the mechanisms by which cannabinoids may affect the neurochemical processes in the PFC that are associated with these impairments. In rodents, acute administration of cannabinoid agonists produces deficits in working memory, attentional function and reversal learning. These effects appear to be largely dependent on CB1 cannabinoid receptor activation. Preclinical studies also indicate that the endogenous cannabinoid system may tonically regulate some mnemonic processes. Effects of cannabinoids on cognition may be mediated via interaction with neurochemical processes in the PFC and hippocampus. In the PFC, cannabinoids may alter dopaminergic, cholinergic and serotonergic transmission. These mechanisms may underlie cognitive impairments observed following marijuana intake in humans, and may also be relevant to other disorders of cognition. Preclinical research will further enhance our understanding of the interactions between the cannabinoid system and cognitive functioning.


Assuntos
Canabinoides/farmacologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de Canabinoides/metabolismo , Acetilcolina/metabolismo , Animais , Atenção/efeitos dos fármacos , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Haplorrinos , Humanos , Córtex Pré-Frontal/metabolismo , Ratos , Receptores de Canabinoides/classificação , Serotonina/metabolismo , Distribuição Tecidual , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA