Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Mol Genet ; 26(20): 3869-3882, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29016847

RESUMO

The discovery of genetic variants influencing sleep patterns can shed light on the physiological processes underlying sleep. As part of a large clinical sequencing project, WGS500, we sequenced a family in which the two male children had severe developmental delay and a dramatically disturbed sleep-wake cycle, with very long wake and sleep durations, reaching up to 106-h awake and 48-h asleep. The most likely causal variant identified was a novel missense variant in the X-linked GRIA3 gene, which has been implicated in intellectual disability. GRIA3 encodes GluA3, a subunit of AMPA-type ionotropic glutamate receptors (AMPARs). The mutation (A653T) falls within the highly conserved transmembrane domain of the ion channel gate, immediately adjacent to the analogous residue in the Grid2 (glutamate receptor) gene, which is mutated in the mouse neurobehavioral mutant, Lurcher. In vitro, the GRIA3(A653T) mutation stabilizes the channel in a closed conformation, in contrast to Lurcher. We introduced the orthologous mutation into a mouse strain by CRISPR-Cas9 mutagenesis and found that hemizygous mutants displayed significant differences in the structure of their activity and sleep compared to wild-type littermates. Typically, mice are polyphasic, exhibiting multiple sleep bouts of sleep several minutes long within a 24-h period. The Gria3A653T mouse showed significantly fewer brief bouts of activity and sleep than the wild-types. Furthermore, Gria3A653T mice showed enhanced period lengthening under constant light compared to wild-type mice, suggesting an increased sensitivity to light. Our results suggest a role for GluA3 channel activity in the regulation of sleep behavior in both mice and humans.


Assuntos
Deficiência Intelectual/genética , Mutação Puntual , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Transtornos do Sono-Vigília/genética , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Mamm Genome ; 26(11-12): 598-608, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26369329

RESUMO

For the analysis of gene function in vivo, gene overexpression in the mouse provides an alternative to loss-of-function knock-out approaches and can help reveal phenotypes where compensatory mechanisms are at play. Furthermore, when multiple lines overexpressing a gene-of-interest at varying levels are studied, the consequences of differences in gene dosage can be explored. Despite these advantages, inherent shortcomings in the methodologies used for the generation of gain-of-function transgenic mouse models have limited their application to functional gene analysis, and the necessity for multiple lines comes at a significant animal and financial cost. The targeting of transgenic overexpression constructs at single copy into neutral genomic loci is the preferred method for the generation of such models, which avoids the unpredictable outcomes associated with conventional random integration. However, despite the increased reliability that targeted transgenic methodologies provide, only one expression level results, as defined by the promoter used. Here, we report a new versatile overexpression allele, the promoter-switch allele, which couples PhiC31 integrase-targeted transgenesis with Flp recombinase promoter switching and Cre recombinase activation. These recombination switches allow the conversion of different overexpression alleles, combining the advantages of transgenic targeting with tunable transgene expression. With this approach, phenotype severity can be correlated with transgene expression in a single mouse model, providing a cost-effective solution amenable to systematic gain-of-function studies.


Assuntos
Expressão Gênica , Transgenes , Alelos , Animais , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Regiões Promotoras Genéticas
3.
CRISPR J ; 7(2): 111-119, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38635329

RESUMO

Integration of a point mutation to correct or edit a gene requires the repair of the CRISPR-Cas9-induced double-strand break by homology-directed repair (HDR). This repair pathway is more active in late S and G2 phases of the cell cycle, whereas the competing pathway of nonhomologous end-joining (NHEJ) operates throughout the cell cycle. Accordingly, modulation of the cell cycle by chemical perturbation or simply by the timing of gene editing to shift the editing toward the S/G2 phase has been shown to increase HDR rates. Using a traffic light reporter in mouse embryonic stem cells and a fluorescence conversion reporter in human-induced pluripotent stem cells, we confirm that a transient cold shock leads to an increase in the rate of HDR, with a corresponding decrease in the rate of NHEJ repair. We then investigated whether a similar cold shock could lead to an increase in the rate of HDR in the mouse embryo. By analyzing the efficiency of gene editing using single nucleotide polymorphism changes and loxP insertion at three different genetic loci, we found that a transient reduction in temperature after zygote electroporation of CRISPR-Cas9 ribonucleoprotein with a single-stranded oligodeoxynucleotide repair template did indeed increase knockin efficiency, without affecting embryonic development. The efficiency of gene editing with and without the cold shock was first assessed by genotyping blastocysts. As a proof of concept, we then confirmed that the modified embryo culture conditions were compatible with live births by targeting the coat color gene tyrosinase and observing the repair of the albino mutation. Taken together, our data suggest that a transient cold shock could offer a simple and robust way to improve knockin outcomes in both stem cells and zygotes.


Assuntos
Edição de Genes , Hipotermia , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas/genética , Zigoto/metabolismo , Hipotermia/metabolismo , Reparo de DNA por Recombinação/genética
4.
Clean Eng Technol ; 5: 100277, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34604830

RESUMO

COVID-19 is the most critical health and safety risk facing the global construction sector. The COVID-19 crisis leads to a reduction in site productivity, has increased compliance costs, delayed projects and increased construction workers' exposure to risk and infections. However, as countries begin to ease lockdowns and restrictions, there is a need to examine the measures that the construction companies can take to ensure workers are "Covid-safe". This research developed a questionnaire instrument that included 24 Covid-preventive measures on construction sites. Isolating sick workers, conducting daily checks for COVID-19 symptoms, preventing hugging/handshaking at the site, displaying health advisory posters and info-graphics, and providing face masks to workers are seen to be the main measures towards keeping sites "Covid-safe". The Principal Component Analysis structured the 24 measures into 4 components. The 4 components explained about 73% of the model, namely hygiene and control, equipment and monitoring, awareness, and incentives. The results found that compliance costs of health and safety regulations to prevent COVID-19 will increase project cost by more than 20%, site productivity will be reduced by up to 50%, and the pandemic will have caused a 40% increase in skill shortages. Cluster analysis was performed to cluster the sites in terms of their exposure to COVID-19 risk. In order to examine the practicability of the findings, the model was validated with 4 case studies. It is asserted that the research findings have the potential to keep sites "Covid-safe", which helps construction companies increase productivity, reduce project costs, reduce claims, and deliver projects on schedule. This research is the first to examine measures to prevent the spread of COVID-19 on construction sites, and the findings hold critical theoretical and practical implications for future research on health and safety management.

5.
PLoS One ; 12(1): e0169887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28081254

RESUMO

Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Troca Materno-Fetal , Modelos Biológicos , Mutagênese , Mutação , Transgenes , Zigoto/metabolismo , Animais , Feminino , Camundongos , Camundongos Transgênicos , Gravidez
6.
PLoS One ; 8(3): e60216, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555929

RESUMO

Transcription Activator-Like Effector Nucleases (TALENs) consist of a nuclease domain fused to a DNA binding domain which is engineered to bind to any genomic sequence. These chimeric enzymes can be used to introduce a double strand break at a specific genomic site which then can become the substrate for error-prone non-homologous end joining (NHEJ), generating mutations at the site of cleavage. In this report we investigate the feasibility of achieving targeted mutagenesis by microinjection of TALEN mRNA within the mouse oocyte. We achieved high rates of mutagenesis of the mouse Zic2 gene in all backgrounds examined including outbred CD1 and inbred C3H and C57BL/6J. Founder mutant Zic2 mice (eight independent alleles, with frameshift and deletion mutations) were created in C3H and C57BL/6J backgrounds. These mice transmitted the mutant alleles to the progeny with 100% efficiency, allowing the creation of inbred lines. Mutant mice display a curly tail phenotype consistent with Zic2 loss-of-function. The efficiency of site-specific germline mutation in the mouse confirm TALEN mediated mutagenesis in the oocyte to be a viable alternative to conventional gene targeting in embryonic stem cells where simple loss-of-function alleles are required. This technology enables allelic series of mutations to be generated quickly and efficiently in diverse genetic backgrounds and will be a valuable approach to rapidly create mutations in mice already bearing one or more mutant alleles at other genetic loci without the need for lengthy backcrossing.


Assuntos
Endodesoxirribonucleases/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética , Animais , Camundongos , Microinjeções , Mutagênese/genética , Mutação , Oócitos
7.
Genesis ; 45(7): 440-6, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17619227

RESUMO

Disruptions of the human FOXP2 gene cause problems with articulation of complex speech sounds, accompanied by impairment in many aspects of language ability. The FOXP2/Foxp2 transcription factor is highly similar in humans and mice, and shows a complex conserved expression pattern, with high levels in neuronal subpopulations of the cortex, striatum, thalamus, and cerebellum. In the present study we generated mice in which loxP sites flank exons 12-14 of Foxp2; these exons encode the DNA-binding motif, a key functional domain. We demonstrate that early global Cre-mediated recombination yields a null allele, as shown by loss of the loxP-flanked exons at the RNA level and an absence of Foxp2 protein. Homozygous null mice display severe motor impairment, cerebellar abnormalities and early postnatal lethality, consistent with other Foxp2 mutants. When crossed to transgenic lines expressing Cre protein in a spatially and/or temporally controlled manner, these conditional mice will provide new insights into the contributions of Foxp2 to distinct neural circuits, and allow dissection of roles during development and in the mature brain.


Assuntos
Fatores de Transcrição Forkhead/genética , Doenças do Sistema Nervoso/genética , Proteínas Repressoras/genética , Animais , Cerebelo/anormalidades , Feminino , Fatores de Transcrição Forkhead/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA