Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 64(4): 807-19, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22317792

RESUMO

Total mercury (Hg) and methylmercury (MeHg) were analyzed in near surface sediments (0-2 cm) and biota (zooplankton, macro-invertebrates, finfish) collected from Narragansett Bay (Rhode Island/Massachusetts, USA) and adjacent embayments and tidal rivers. Spatial patterns in sediment contamination were governed by the high affinity of Hg for total organic carbon (TOC). Sediment MeHg and percent MeHg were also inversely related to summer bottom water dissolved oxygen (DO) concentrations, presumably due to the increased activity of methylating bacteria. For biota, Hg accumulation was influenced by inter-specific habitat preferences and trophic structure, and sediments with high TOC and percent silt-clay composition limited mercury bioavailability. Moreover, hypoxic bottom water limited Hg bioaccumulation, which is possibly mediated by a reduction in biotic foraging, and thus, dietary uptake of mercury. Finally, most biota demonstrated a significant positive relationship between tissue and TOC-normalized sediment Hg, but relationships were much weaker or absent for sediment MeHg. These results have important implications for the utility of estuarine biota as subjects for mercury monitoring programs.


Assuntos
Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Fundulidae/fisiologia , Invertebrados/química , Compostos de Metilmercúrio/análise , New England , Oxigênio/análise , Água do Mar/química , Zooplâncton/química
2.
Science ; 333(6043): 719-23, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21817044

RESUMO

The modern Indian summer monsoon (ISM) is characterized by exceptionally strong interhemispheric transport, indicating the importance of both Northern and Southern Hemisphere processes driving monsoon variability. Here, we present a high-resolution continental record from southwestern China that demonstrates the importance of interhemispheric forcing in driving ISM variability at the glacial-interglacial time scale as well. Interglacial ISM maxima are dominated by an enhanced Indian low associated with global ice volume minima. In contrast, the glacial ISM reaches a minimum, and actually begins to increase, before global ice volume reaches a maximum. We attribute this early strengthening to an increased cross-equatorial pressure gradient derived from Southern Hemisphere high-latitude cooling. This mechanism explains much of the nonorbital scale variance in the Pleistocene ISM record.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA