Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proteins ; 92(2): 192-205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794633

RESUMO

Diverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (KV 1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis. The ShKT domain has been found in numerous other species, but only a tiny fraction of ShKT domains has been characterized functionally. Despite adopting the canonical ShK fold, some ShKT peptides from sea anemones inhibit KV 1.x, while others do not. Mutagenesis studies have shown that a Lys-Tyr (KY) dyad plays a key role in KV 1.x blockade, although a cationic residue followed by a hydrophobic residue may also suffice. Nevertheless, ShKT peptides displaying an ShK-like fold and containing a KY dyad do not necessarily block potassium channels, so additional criteria are needed to determine whether new ShKT peptides might show activity against potassium channels. In this study, we used a combination of NMR and molecular dynamics (MD) simulations to assess the potential activity of a new ShKT peptide. We determined the structure of ShKT-Ts1, from the sea anemone Telmatactis stephensoni, examined its tissue localization, and investigated its activity against a range of ion channels. As ShKT-Ts1 showed no activity against KV 1.x channels, we used MD simulations to investigate whether solvent exposure of the dyad residues may be informative in rationalizing and potentially predicting the ability of ShKT peptides to block KV 1.x channels. We show that either a buried dyad that does not become exposed during MD simulations, or a partially exposed dyad that becomes buried during MD simulations, correlates with weak or absent activity against KV 1.x channels. Therefore, structure determination coupled with MD simulations, may be used to predict whether new sequences belonging to the ShKT family may act as potassium channel blockers.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/química , Peptídeos/farmacologia , Peptídeos/química , Canais de Potássio/metabolismo , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
2.
BMC Biol ; 21(1): 121, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226201

RESUMO

BACKGROUND: The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS: We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS: Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Genômica , Inversão Cromossômica , Cisteína , Dissulfetos
3.
Mol Ecol ; 31(3): 866-883, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837433

RESUMO

The phylum Cnidaria is the oldest extant venomous group and is defined by the presence of nematocysts, specialized organelles responsible for venom production and delivery. Although toxin peptides and the cells housing nematocysts are distributed across the entire animal, nematocyte and venom profiles have been shown to differ across morphological structures in actiniarians. In this study, we explore the relationship between patterns of toxin expression and the ecological roles of discrete anatomical structures in Telmatactis stephensoni. Specifically, using a combination of proteomic and transcriptomic approaches, we examined whether there is a direct correlation between the functional similarity of regions and the similarity of their associated toxin expression profiles. We report that the regionalization of toxin production is consistent with the partitioning of the ecological roles of venom across envenomating structures, and that three major functional regions are present in T. stephensoni: tentacles, epidermis and gastrodermis. Additionally, we find that most structures that serve similar functions not only have comparable putative toxin profiles but also similar nematocyst types. There was no overlap in the putative toxins identified using proteomics and transcriptomics, but the expression patterns of specific milked venom peptides were conserved across RNA-sequencing and mass spectrometry imaging data sets. Furthermore, based on our data, it appears that acontia of T. stephensoni may be transcriptionally inactive and only mature nematocysts are present in the distal portions of the threads. Overall, we find that the venom profile of different anatomical regions in sea anemones varies according to its ecological functions.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Proteômica , Anêmonas-do-Mar/genética , Análise de Sequência de RNA , Transcriptoma
4.
J Exp Biol ; 223(Pt 7)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32098884

RESUMO

The equine microbiome can change in response to dietary alteration and may play a role in insulin dysregulation. The aim of this study was to determine the effect of adding pasture to a hay diet on the faecal bacterial microbiome of both healthy and insulin-dysregulated ponies. Faecal samples were collected from 16 ponies before and after dietary change to enable bacterial 16S rRNA sequencing of the V3-V4 region. The dominant phyla in all samples were the Firmicutes and Bacteroidetes. The evenness of the bacterial populations decreased after grazing pasture, and when a pony was moderately insulin dysregulated (P=0.001). Evenness scores negatively correlated with post-prandial glucagon-like peptide-1 concentration after a hay-only diet (r²=-0.7, P=0.001). A change in diet explained 3% of faecal microbiome variability. We conclude that metabolically healthy ponies have greater microbial stability when challenged with a subtle dietary change, compared with moderately insulin-dysregulated ponies.


Assuntos
Insulina , Microbiota , Animais , Dieta , Fezes , Cavalos , RNA Ribossômico 16S/genética
5.
Mar Drugs ; 18(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283847

RESUMO

This review examines the current state of knowledge regarding toxins from anthozoans (sea anemones, coral, zoanthids, corallimorphs, sea pens and tube anemones). We provide an overview of venom from phylum Cnidaria and review the diversity of venom composition between the two major clades (Medusozoa and Anthozoa). We highlight that the functional and ecological context of venom has implications for the temporal and spatial expression of protein and peptide toxins within class Anthozoa. Understanding the nuances in the regulation of venom arsenals has been made possible by recent advances in analytical technologies that allow characterisation of the spatial distributions of toxins. Furthermore, anthozoans are unique in that ecological roles can be assigned using tissue expression data, thereby circumventing some of the challenges related to pharmacological screening.


Assuntos
Venenos de Cnidários/fisiologia , Toxinas Marinhas/metabolismo , Anatomia , Animais , Antozoários/classificação , Cnidários/classificação , Humanos , Biologia Marinha , Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , Filogenia
6.
Mol Ecol ; 28(9): 2272-2289, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30913335

RESUMO

Members of phylum Cnidaria are an ancient group of venomous animals and rely on a number of specialized tissues to produce toxins in order to fulfil a range of ecological roles including prey capture, defence against predators, digestion and aggressive encounters. However, limited comprehensive analyses of the evolution and expression of toxin genes currently exist for cnidarian species. In this study, we use genomic and transcriptomic sequencing data to examine gene copy number variation and selective pressure on toxin gene families in phylum Cnidaria. Additionally, we use quantitative RNA-seq and mass spectrometry imaging to understand expression patterns and tissue localization of toxin production in sea anemones. Using genomic data, we demonstrate that the first large-scale expansion and diversification of known toxin genes occurs in phylum Cnidaria, a process we also observe in other venomous lineages, which we refer to as convergent amplification. Our analyses of selective pressure on sea anemone toxin gene families reveal that purifying selection is the dominant mode of evolution for these genes and that phylogenetic inertia is an important determinant of toxin gene complement in this group. The gene expression and tissue localization data revealed that specific genes and proteins from toxin gene families show strong patterns of tissue and developmental-phase specificity in sea anemones. Overall, convergent amplification and phylogenetic inertia have strongly influenced the distribution and evolution of the toxin complement observed in sea anemones, while the production of venoms with different compositions across tissues is related to the functional and ecological roles undertaken by each tissue type.


Assuntos
Venenos de Cnidários/genética , Expressão Gênica , Anêmonas-do-Mar/genética , Animais , Venenos de Cnidários/química , Espectrometria de Massas , Filogenia , Seleção Genética , Análise de Sequência de RNA
7.
Mar Drugs ; 17(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842369

RESUMO

Serine proteases play pivotal roles in normal physiology and a spectrum of patho-physiological processes. Accordingly, there is considerable interest in the discovery and design of potent serine protease inhibitors for therapeutic applications. This led to concerted efforts to discover versatile and robust molecular scaffolds for inhibitor design. This investigation is a bioprospecting study that aims to isolate and identify protease inhibitors from the cnidarian Actinia tenebrosa. The study isolated two Kunitz-type protease inhibitors with very similar sequences but quite divergent inhibitory potencies when assayed against bovine trypsin, chymostrypsin, and a selection of human sequence-related peptidases. Homology modeling and molecular dynamics simulations of these inhibitors in complex with their targets were carried out and, collectively, these methodologies enabled the definition of a versatile scaffold for inhibitor design. Thermal denaturation studies showed that the inhibitors were remarkably robust. To gain a fine-grained map of the residues responsible for this stability, we conducted in silico alanine scanning and quantified individual residue contributions to the inhibitor's stability. Sequences of these inhibitors were then used to search for Kunitz homologs in an A. tenebrosa transcriptome library, resulting in the discovery of a further 14 related sequences. Consensus analysis of these variants identified a rich molecular diversity of Kunitz domains and expanded the palette of potential residue substitutions for rational inhibitor design using this domain.


Assuntos
Cnidários/classificação , Serina Proteases/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Animais , Bovinos , Quimotripsina/antagonistas & inibidores , Quimotripsina/metabolismo , Simulação por Computador , Humanos , Simulação de Dinâmica Molecular , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/isolamento & purificação , Tripsina/efeitos dos fármacos , Tripsina/metabolismo , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/farmacologia
8.
BMC Genomics ; 17(1): 850, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27806695

RESUMO

BACKGROUND: Innate immune genes tend to be highly conserved in metazoans, even in early divergent lineages such as Cnidaria (jellyfish, corals, hydroids and sea anemones) and Porifera (sponges). However, constant and diverse selection pressures on the immune system have driven the expansion and diversification of different immune gene families in a lineage-specific manner. To investigate how the innate immune system has evolved in a subset of sea anemone species (Order: Actiniaria), we performed a comprehensive and comparative study using 10 newly sequenced transcriptomes, as well as three publically available transcriptomes, to identify the origins, expansions and contractions of candidate and novel immune gene families. RESULTS: We characterised five conserved genes and gene families, as well as multiple novel innate immune genes, including the newly recognised putative pattern recognition receptor CniFL. Single copies of TLR, MyD88 and NF-κB were found in most species, and several copies of IL-1R-like, NLR and CniFL were found in almost all species. Multiple novel immune genes were identified with domain architectures including the Toll/interleukin-1 receptor (TIR) homology domain, which is well documented as functioning in protein-protein interactions and signal transduction in immune pathways. We hypothesise that these genes may interact as novel proteins in immune pathways of cnidarian species. Novelty in the actiniarian immunome is not restricted to only TIR-domain-containing proteins, as we identify a subset of NLRs which have undergone neofunctionalisation and contain 3-5 N-terminal transmembrane domains, which have so far only been identified in two anthozoan species. CONCLUSIONS: This research has significance in understanding the evolution and origin of the core eumetazoan gene set, including how novel innate immune genes evolve. For example, the evolution of transmembrane domain containing NLRs indicates that these NLRs may be membrane-bound, while all other metazoan and plant NLRs are exclusively cytosolic receptors. This is one example of how species without an adaptive immune system may evolve innovative solutions to detect pathogens or interact with native microbiota. Overall, these results provide an insight into the evolution of the innate immune system, and show that early divergent lineages, such as actiniarians, have a diverse repertoire of conserved and novel innate immune genes.


Assuntos
Genoma , Genômica , Imunidade Inata/genética , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/imunologia , Animais , Biologia Computacional/métodos , Epistasia Genética , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genômica/métodos , Família Multigênica , Proteína Inibidora de Apoptose Neuronal/genética , Proteína Inibidora de Apoptose Neuronal/metabolismo , Filogenia , Reprodutibilidade dos Testes , Anêmonas-do-Mar/classificação , Transcriptoma
9.
Plant Biotechnol J ; 14(12): 2240-2253, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27155090

RESUMO

Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either 'Landraces' or 'Wild and Weedy' genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.


Assuntos
Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Amido/metabolismo
10.
New Phytol ; 210(2): 717-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26668107

RESUMO

Plants have evolved many strategies to protect themselves from attack, including peptide toxins that are ribosomally synthesized and thus adaptable directly by genetic polymorphisms. Certain toxins in Clitoria ternatea (butterfly pea) are cyclic cystine-knot peptides of c. 30 residues, called cyclotides, which have co-opted the plant's albumin-1 gene family for their production. How butterfly pea albumin-1 genes were commandeered and how these cyclotides are utilized in defence remain unclear. The role of cyclotides in host plant ecology and biotechnological applications requires exploration. We characterized the sequence diversity and expression dynamics of precursor and processing proteins implicated in butterfly pea cyclotide biosynthesis by expression profiling through RNA-sequencing (RNA-seq). Peptide-enriched extracts from various organs were tested for activity against insect-like membranes and the model nematode Caenorhabditis elegans. We found that the evolution and deployment of cyclotides involved their diversification to exhibit different chemical properties and expression between organs facing different defensive challenges. Cyclotide-enriched fractions from soil-contacting organs were effective at killing nematodes, whereas similar enriched fractions from aerial organs contained cyclotides that exhibited stronger interactions with insect-like membrane lipids. Cyclotides are employed as versatile and combinatorial mediators of defence in C. ternatea and have specialized to affect different classes of attacking organisms.


Assuntos
Evolução Molecular , Genes de Plantas , Peptídeos Cíclicos/metabolismo , Plantas/genética , Plantas/imunologia , Sequência de Aminoácidos , Análise por Conglomerados , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Solo/química , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Água
11.
BMC Genomics ; 15: 786, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25214207

RESUMO

BACKGROUND: The koala, Phascolarctos cinereus, is a biologically unique and evolutionarily distinct Australian arboreal marsupial. The goal of this study was to sequence the transcriptome from several tissues of two geographically separate koalas, and to create the first comprehensive catalog of annotated transcripts for this species, enabling detailed analysis of the unique attributes of this threatened native marsupial, including infection by the koala retrovirus. RESULTS: RNA-Seq data was generated from a range of tissues from one male and one female koala and assembled de novo into transcripts using Velvet-Oases. Transcript abundance in each tissue was estimated. Transcripts were searched for likely protein-coding regions and a non-redundant set of 117,563 putative protein sequences was produced. In similarity searches there were 84,907 (72%) sequences that aligned to at least one sequence in the NCBI nr protein database. The best alignments were to sequences from other marsupials. After applying a reciprocal best hit requirement of koala sequences to those from tammar wallaby, Tasmanian devil and the gray short-tailed opossum, we estimate that our transcriptome dataset represents approximately 15,000 koala genes. The marsupial alignment information was used to look for potential gene duplications and we report evidence for copy number expansion of the alpha amylase gene, and of an aldehyde reductase gene.Koala retrovirus (KoRV) transcripts were detected in the transcriptomes. These were analysed in detail and the structure of the spliced envelope gene transcript was determined. There was appreciable sequence diversity within KoRV, with 233 sites in the KoRV genome showing small insertions/deletions or single nucleotide polymorphisms. Both koalas had sequences from the KoRV-A subtype, but the male koala transcriptome has, in addition, sequences more closely related to the KoRV-B subtype. This is the first report of a KoRV-B-like sequence in a wild population. CONCLUSIONS: This transcriptomic dataset is a useful resource for molecular genetic studies of the koala, for evolutionary genetic studies of marsupials, for validation and annotation of the koala genome sequence, and for investigation of koala retrovirus. Annotated transcripts can be browsed and queried at http://koalagenome.org.


Assuntos
Perfilação da Expressão Gênica , Variação Genética , Phascolarctidae/genética , Phascolarctidae/virologia , Retroviridae/genética , Retroviridae/fisiologia , Transcrição Gênica , Animais , Sequência de Bases , Evolução Molecular , Feminino , Duplicação Gênica/genética , Genômica , Masculino , Anotação de Sequência Molecular , Splicing de RNA/genética , Análise de Sequência de RNA , Proteínas Virais/genética
12.
Mol Ecol ; 23(18): 4645-57, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-25112896

RESUMO

In male tephritid fruit flies of the genus Bactrocera, feeding on secondary plant compounds (sensu lato male lures = methyl eugenol, raspberry ketone and zingerone) increases male mating success. Ingested male lures alter the male pheromonal blend, normally making it more attractive to females and this is considered the primary mechanism for the enhanced mating success. However, the male lures raspberry ketone and zingerone are known, across a diverse range of other organisms, to be involved in increasing energy metabolism. If this also occurs in Bactrocera, then this may represent an additional benefit to males as courtship is metabolically expensive and lure feeding may increase a fly's short-term energy. We tested this hypothesis by performing comparative RNA-seq analysis between zingerone-fed and unfed males of Bactrocera tryoni. We also carried out behavioural assays with zingerone- and cuelure-fed males to test whether they became more active. RNA-seq analysis revealed, in zingerone-fed flies, up-regulation of 3183 genes with homologues transcripts to those known to regulate intermale aggression, pheromone synthesis, mating and accessory gland proteins, along with significant enrichment of several energy metabolic pathways and gene ontology terms. Behavioural assays show significant increases in locomotor activity, weight reduction and successful mating after mounting; all direct/indirect measures of increased activity. These results suggest that feeding on lures leads to complex physiological changes, which result in more competitive males. These results do not negate the pheromone effect, but do strongly suggest that the phytochemical-induced sexual selection is governed by both female preference and male competitive mechanisms.


Assuntos
Atrativos Sexuais/química , Comportamento Sexual Animal , Tephritidae/genética , Transcriptoma , Animais , Dieta , Feminino , Guaiacol/análogos & derivados , Guaiacol/química , Masculino , Análise de Sequência de RNA
13.
Toxins (Basel) ; 16(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393163

RESUMO

While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.


Assuntos
Anêmonas-do-Mar , Toxinas Biológicas , Animais , Anêmonas-do-Mar/genética , Peçonhas/genética , Toxinas Biológicas/genética , Transcriptoma , RNA
14.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140952, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37640250

RESUMO

Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone Telmatactis stephensoni identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (NaV, TRPV1, KV and CaV). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in Escherichia coli, enabling the production of both unlabelled and uniformly 13C,15N-labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch-clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (NaV) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against Drosophila melanogaster flies. However, the recombinant peptide at 100 nM showed >50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.


Assuntos
Anêmonas-do-Mar , Animais , Humanos , Anêmonas-do-Mar/química , Proteômica , Drosophila melanogaster/metabolismo , Austrália , Peptídeos/química , Dissulfetos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
15.
Mol Ecol ; 22(9): 2366-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23738371

RESUMO

Invasive species provide excellent study systems to evaluate the ecological and evolutionary processes that contribute to the colonization of novel environments. While the ecological processes that contribute to the successful establishment of invasive plants have been studied in detail, investigation of the evolutionary processes involved in successful invasions has only recently received attention. In particular, studies investigating the genomic and gene expression differences between native and introduced populations of invasive species are just beginning and are required if we are to understand how plants become invasive. In the current issue of Molecular Ecology, Hodgins et al. (2013) tackle this unresolved question, by examining gene expression differences between native and introduced populations of annual ragweed, Ambrosia artemisiifolia. The study identifies a number of potential candidate genes based on gene expression differences that may be responsible for the success of annual ragweed in its introduced range. Furthermore, genes involved in stress response are over-represented in the differentially expressed gene set. Future experiments could use functional studies to test whether changes in gene expression at these candidate genes do in fact underlie changes in growth characteristics and reproductive output observed in this and other invasive species.


Assuntos
Ambrosia/genética , Expressão Gênica , Espécies Introduzidas
16.
Ecol Evol ; 13(10): e10575, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780088

RESUMO

Feral pigs (Sus scrofa) are a destructive and widespread invasive pest in Australia. An understanding of feral pig movement is required to develop management strategies to control feral pigs in Australia. Because landscape structure can have a strong influence on animal movement, it is important to determine how landscape features facilitate or impede the movement of feral pigs. Consequently, we conducted a landscape genetic analysis of feral pig populations in the Herbert region of far north Queensland, Australia, to determine management units and provide recommendations to better inform feral pig population control strategies. Using microsatellite data obtained from 256 feral pig samples from 44 sites, we examined feral pig population structure at multiple spatial scales for univariate and multivariate landscape resistance surfaces to determine the optimal spatial scale and to identify which of the nine landscape features tested impede or facilitate feral pig gene flow. Only weak genetic structure was found among the 44 sampling sites, but major waterways were identified as a minor barrier to gene flow, and an isolation by distance model was supported. We also found that highways facilitated gene flow across the study area, and this suggests that they may act as movement corridors or indicate translocation of feral pigs. Additionally, incorporating a second spatial scale enhanced the ability of our landscape genetics analysis to detect the influence of landscape structure on gene flow. We identified three management units based on natural barriers to gene flow and future targeted control should be undertaken in these management units to deliver sustained reduction of feral pig populations in the Herbert region. This study demonstrates how a landscape genetic approach can be used to gain insight into the ecology of an invasive pest species and be used to develop population control strategies which utilise natural barriers to movement.

17.
Toxins (Basel) ; 15(3)2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36977109

RESUMO

Phylum Cnidaria represents a unique group among venomous taxa, with its delivery system organised as individual organelles, known as nematocysts, heterogeneously distributed across morphological structures rather than packaged as a specialised organ. Acontia are packed with large nematocysts that are expelled from sea anemones during aggressive encounters with predatory species and are found in a limited number of species in the superfamily Metridioidea. Little is known about this specialised structure other than the commonly accepted hypothesis of its role in defence and a rudimentary understanding of its toxin content and activity. This study utilised previously published transcriptomic data and new proteomic analyses to expand this knowledge by identifying the venom profile of acontia in Calliactis polypus. Using mass spectrometry, we found limited toxin diversity in the proteome of acontia, with an abundance of a sodium channel toxin type I, and a novel toxin with two ShK-like domains. Additionally, genomic evidence suggests that the proposed novel toxin is ubiquitous across sea anemone lineages. Overall, the venom profile of acontia in Calliactis polypus and the novel toxin identified here provide the basis for future research to define the function of acontial toxins in sea anemones.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/química , Peçonhas , Proteômica , Perfilação da Expressão Gênica , Nematocisto , Venenos de Cnidários/genética , Venenos de Cnidários/química
18.
Front Plant Sci ; 14: 1321555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312357

RESUMO

The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.

19.
J Anim Ecol ; 81(5): 940-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22489927

RESUMO

1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.


Assuntos
Aves/fisiologia , Demografia , Ecossistema , Animais , Aves/genética , Atividades Humanas , Árvores
20.
Insects ; 13(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35621786

RESUMO

The larvae of frugivorous tephritid fruit flies feed within fruit and are global pests of horticulture. With the reduced use of pesticides, alternative control methods are needed, of which fruit resistance is one. In the current study, we explicitly tested for phenotypic evidence of induced fruit defences by running concurrent larval survival experiments with fruit on or off the plant, assuming that defence induction would be stopped or reduced by fruit picking. This was accompanied by RT-qPCR analysis of fruit defence and insect detoxification gene expression. Our fruit treatments were picking status (unpicked vs. picked) and ripening stage (colour break vs. fully ripe), our fruit fly was the polyphagous Bactrocera tryoni, and larval survival was assessed through destructive fruit sampling at 48 and 120 h, respectively. The gene expression study targeted larval and fruit tissue samples collected at 48 h and 120 h from picked and unpicked colour-break fruit. At 120 h in colour-break fruit, larval survival was significantly higher in the picked versus unpicked fruit. The gene expression patterns in larval and plant tissue were not affected by picking status, but many putative plant defence and insect detoxification genes were upregulated across the treatments. The larval survival results strongly infer an induced defence mechanism in colour-break tomato fruit that is stronger/faster in unpicked fruits; however, the gene expression patterns failed to provide the same clear-cut treatment effect. The lack of conformity between these results could be related to expression changes in unsampled candidate genes, or due to critical changes in gene expression that occurred during the unsampled periods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA