Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 591(7848): 87-91, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442059

RESUMO

Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America1, yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae2,3, there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently.


Assuntos
Extinção Biológica , Filogenia , Lobos/classificação , Animais , Fósseis , Fluxo Gênico , Genoma/genética , Genômica , Mapeamento Geográfico , América do Norte , Paleontologia , Fenótipo , Lobos/genética
2.
Ecol Evol ; 13(10): e10625, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37877101

RESUMO

Marine historical ecology provides a means to establish baselines to inform current fisheries management. Groupers (Epinephelidae) are key species for fisheries in the Mediterranean, which have been heavily overfished. Species abundance and distribution prior to the 20th century in the Mediterranean remains poorly known. To reconstruct the past biogeography of Mediterranean groupers, we investigated whether Zooarchaeology by Mass Spectrometry (ZooMS) can be used for identifying intra-genus grouper bones to species level. We discovered 22 novel, species-specific ZooMS biomarkers for groupers. Applying these biomarkers to Kinet Höyük, a Mediterranean archaeological site, demonstrated 4000 years of regional Epinephelus aeneus dominance and resiliency through millennia of fishing pressures, habitat degradation and climatic changes. Combining ZooMS identifications with catch size reconstructions revealed the Epinephelus aeneus capacity for growing 30 cm larger than hitherto documented, revising the maximum Total Length from 120 to 150 cm. Our results provide ecological baselines for a key Mediterranean fishery which could be leveraged to define and assess conservation targets.

3.
R Soc Open Sci ; 9(7): 220149, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35911190

RESUMO

Bones of Pleuronectiformes (flatfish) are often not identified to species due to the lack of diagnostic features on bones that allow adequate distinction between taxa. This hinders in-depth understanding of archaeological fish assemblages and particularly flatfish fisheries throughout history. This is especially true for the North Sea region, where several commercially significant species have been exploited for centuries, yet their archaeological remains continue to be understudied. In this research, eight peptide biomarkers for 18 different species of Pleuronectiformes from European waters are described using MALDI-TOF MS and liquid chromatography tandem mass spectrometry data obtained from modern reference specimens. Bone samples (n = 202) from three archaeological sites in the UK and France dating to the medieval period (ca seventh-sixteenth century CE) were analysed using zooarchaeology by mass spectrometry (ZooMS). Of the 201 that produced good quality spectra, 196 were identified as flatfish species, revealing a switch in targeted species through time and indicating that ZooMS offers a more reliable and informative approach for species identification than osteological methods alone. We recommend this approach for future studies of archaeological flatfish remains as the precise species uncovered from a site can tell much about the origin of the fish, where people fished and whether they traded between regions.

4.
J Proteomics ; 230: 103986, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32941991

RESUMO

Ancient proteomics is being applied to samples dating further and further back in time, with many palaeontological specimens providing protein sequence data for phylogenetic analysis as well as protein degradation studies. However, fossils are a precious material and proteomic analysis is destructive and costly. In this paper we consider three different techniques (ATR-FTIR, MALDI-ToF MS and chiral AA analysis) to screen fossil material for potential protein preservation, aiming to maximise the proteomic information recovered and saving costly time consuming analyses which may produce low quality results. It was found that splitting factor and C/P indices from ATR-FTIR were not a reliable indicator of protein survival as they are confounded by secondary mineralisation of the fossil material. Both MALDI-ToF MS and chiral AA analysis results were able to successfully identify samples with surviving proteins, and it is suggested that one or both of these analyses be used for screening palaeontological specimens. SIGNIFICANCE: This study has shown both chiral amino acid analysis and MALDI-ToF MS are reliable screening methods for predicting protein survival in fossils. Both these methods are quick, cheap, minimally destructive (1 mg and 15 mg respectively) and can provide crucial additional information about the endogeneity of the surviving proteins. It is hoped that the use of these screening methods will encourage the examination of a wide range of palaeontological specimens for potential proteomic analysis. This in turn will give us a better understanding of protein survival far back in time and under different environmental conditions.


Assuntos
Fósseis , Proteômica , Peptídeos , Filogenia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Sci Rep ; 9(1): 6420, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015542

RESUMO

Ancient protein analysis is a rapidly developing field of research. Proteins ranging in age from the Quaternary to Jurassic are being used to answer questions about phylogeny, evolution, and extinction. However, these analyses are sometimes contentious, and focus primarily on large vertebrates in sedimentary fossilisation environments; there are few studies of protein preservation in fossils in amber. Here we show exceptionally slow racemisation rates during thermal degradation experiments of resin enclosed feathers, relative to previous thermal degradation experiments of ostrich eggshell, coral skeleton, and limpet shell. We also recover amino acids from two specimens of fossil feathers in amber. The amino acid compositions are broadly similar to those of degraded feathers, but concentrations are very low, suggesting that much of the original protein has been degraded and lost. High levels of racemisation in more apolar, slowly racemising amino acids suggest that some of the amino acids were ancient and therefore original. Our findings indicate that the unique fossilisation environment inside amber shows potential for the recovery of ancient amino acids and proteins.


Assuntos
Âmbar/química , Aminoácidos/isolamento & purificação , Casca de Ovo/química , Plumas/química , Fósseis/história , Proteínas/isolamento & purificação , Aminoácidos/química , Aminoácidos/história , Animais , Aves/anatomia & histologia , Cromatografia de Fase Reversa , Dinossauros/anatomia & histologia , Extinção Biológica , Plumas/anatomia & histologia , Fósseis/anatomia & histologia , História Antiga , Preservação Biológica , Proteínas/química , Proteínas/história , Proteólise
6.
Nat Ecol Evol ; 3(7): 1121-1130, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31171860

RESUMO

The living tree sloths Choloepus and Bradypus are the only remaining members of Folivora, a major xenarthran radiation that occupied a wide range of habitats in many parts of the western hemisphere during the Cenozoic, including both continents and the West Indies. Ancient DNA evidence has played only a minor role in folivoran systematics, as most sloths lived in places not conducive to genomic preservation. Here we utilize collagen sequence information, both separately and in combination with published mitochondrial DNA evidence, to assess the relationships of tree sloths and their extinct relatives. Results from phylogenetic analysis of these datasets differ substantially from morphology-based concepts: Choloepus groups with Mylodontidae, not Megalonychidae; Bradypus and Megalonyx pair together as megatherioids, while monophyletic Antillean sloths may be sister to all other folivorans. Divergence estimates are consistent with fossil evidence for mid-Cenozoic presence of sloths in the West Indies and an early Miocene radiation in South America.


Assuntos
Bichos-Preguiça , Animais , DNA Mitocondrial , Fósseis , Filogenia
7.
Elife ; 52016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27668515

RESUMO

Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA