Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Angew Chem Int Ed Engl ; 62(51): e202312517, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37924230

RESUMO

DNA repair protein RAD51 is a key player in the homologous recombination pathway. Upon DNA damage, RAD51 is transported into the nucleus by BRCA2, where it can repair DNA double-strand breaks. Due to the structural complexity and dynamics, researchers have not yet clarified the mechanistic details of every step of RAD51 recruitment and DNA repair. RAD51 possesses an intrinsic tendency to form oligomeric structures, which make it challenging to conduct biochemical and biophysical investigations. Here, for the first time, we report on the isolation and characterization of a human monomeric RAD51 recombinant form, obtained through a double mutation, which preserves the protein's integrity and functionality. We investigated different buffers to identify the most suitable condition needed to definitively stabilize the monomer. The monomer of human RAD51 provides the community with a unique biological tool for investigating RAD51-mediated homologous recombination, and paves the way for more reliable structural, mechanistic, and drug discovery studies.


Assuntos
Recombinação Homóloga , Neoplasias , Rad51 Recombinase , Proteínas Recombinantes , Humanos , Dano ao DNA , Reparo do DNA , Neoplasias/genética , Rad51 Recombinase/química , Rad51 Recombinase/genética , Rad51 Recombinase/isolamento & purificação , Mutação , Estabilidade Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
2.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056832

RESUMO

Recent reports of antiepileptic activity of the fungal alkaloid TMC-120B have renewed the interest in this natural product. Previous total syntheses of TMC-120B comprise many steps and have low overall yields (11-17 steps, 1.5-2.9% yield). Thus, to access this compound more efficiently, we herein present a concise and significantly improved total synthesis of the natural product. Our short synthesis relies on two key cyclization steps to assemble the central scaffold: isoquinoline formation via an ethynyl-imino cyclization and an intramolecular Friedel-Crafts reaction to form the furanone.


Assuntos
Alcaloides/química , Aspergillus/química , Benzofuranos/síntese química , Isoquinolinas/química , Benzofuranos/química , Ciclização , Isoquinolinas/síntese química , Estrutura Molecular , Estereoisomerismo
3.
Bioorg Med Chem ; 28(2): 115247, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31843461

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes severe joints damage and other extra-articular alterations. Despite the efficacy of low-dose methotrexate (LD-MTX) in RA treatment, adverse effects are the predominant reasons for discontinuation of therapy. As a therapeutic targeting strategy, the presence of increased concentrations of reactive oxygen species (ROS) in the inflammatory environment can serve as the stimulus for prodrug activation in site-selective drug delivery systems. Our group has previously reported novel ROS sensitive prodrugs (1-3) of MTX and aminopterin (AMT) for site-selective delivery to inflammatory tissue associated with RA, with the aim of reducing side effects in RA therapy. Herein, we investigate the effect and toxicity of the same prodrugs in a rat CIA (collagen-induced arthritis) model of RA. We find that prodrug 1, an arylboronic acid ROS-sensitive MTX-prodrug, displays similar in vivo efficacy as MTX at an equimolar dose, while avoiding adverse effects known to restrict MTX treatment. To further characterize prodrug 1 and its ROS mediated activation, we synthesized compound 4, a negative control lacking the boronic acid moiety. We then investigated the effect of molecules on cell proliferation and cytotoxicity in the presence of the ROS scavenger pyruvate, as well as their stability in buffer and cell media, demonstrating a direct correlation between ROS concentration and the prodrug activity. Moreover, the in vitro ADME properties were investigated, including permeability, rat plasma and microsomal stability.


Assuntos
Aminopterina/farmacologia , Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Metotrexato/farmacologia , Pró-Fármacos/farmacologia , Aminopterina/administração & dosagem , Aminopterina/química , Animais , Antirreumáticos/administração & dosagem , Antirreumáticos/química , Apoptose/efeitos dos fármacos , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/metabolismo , Injeções Intraperitoneais , Metotrexato/administração & dosagem , Metotrexato/química , Estrutura Molecular , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Ratos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
4.
Chemphyschem ; 20(23): 3186-3194, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31608563

RESUMO

In this manuscript the different noncovalent interactions established between (HYCN)2 dimers (Y=S, Se and Te) have been studied at the MP2 and CCSD(T) level of theory. Several homodimers have been taken into account, highlighting the capacity of these compounds to act both as electron donor and acceptor. The main properties studied were geometries, binding energy (Eb ), and molecular electrostatic potential (MEP). Given the wide application of chalcogen bonds, and more specifically of cyano-chalcogen moieties in molecular recognition, natural bond orbital (NBO), "atoms-in-molecules" (AIM), and electron density shift (EDS) analysis were also used to analyse the different noncovalent interactions upon complexation. The presence of hydrogen, chalcogen and dipole-dipole interactions was confirmed and their implications on molecular recognition were analysed.

5.
Plant Cell Physiol ; 59(11): 2188-2203, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239816

RESUMO

Tocopherols are non-polar compounds synthesized in the plastids, which function as major antioxidants of the plant cells and are essential in the human diet. Both the intermediates and final products of the tocopherol biosynthetic pathway must cross plastid membranes to reach their sites of action. So far, no protein with tocopherol binding activity has been reported in plants. Here, we demonstrated that the tomato SlTBP protein is targeted to chloroplasts and able to bind α-tocopherol. SlTBP-knockdown tomato plants exhibited reduced levels of tocopherol in both leaves and fruits. Several tocopherol deficiency phenotypes were apparent in the transgenic lines, such as alterations in photosynthetic parameters, dramatic distortion of thylakoid membranes and significant variations in the lipid profile. These results, along with the altered expression of genes related to photosynthesis, and tetrapyrrole, lipid, isoprenoid, inositol/phosphoinositide and redox metabolism, suggest that SlTBP may act in conducting tocopherol (or its biosynthetic intermediates) between the plastid compartments and/or at the interface between chloroplast and endoplasmic reticulum membranes, affecting interorganellar lipid metabolism.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , alfa-Tocoferol/metabolismo , Cloroplastos/metabolismo , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Metabolismo dos Lipídeos , Solanum lycopersicum/genética , Filogenia , Proteínas de Plantas/genética , Plastídeos/metabolismo
6.
Phys Chem Chem Phys ; 19(46): 31177-31185, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29139502

RESUMO

A model of phosphorylated and ATP-containing B-Raf protein kinase is needed as a tool for the structure-based design of new allosteric inhibitors, since no crystal structure of such a system has been resolved. Here, we present the development of such a model as well as a thorough analysis of its structural features. This model was prepared using a systematic molecular dynamics approach considering the presence or absence of both the phosphate group at the Thr599 site and the ATP molecule. Then, different structural features (i.e. DFG motif, Mg2+ binding loop, activation loop, phosphorylation site and αC-helix region) were analysed for each trajectory to validate the aimed 2pBRAF_ATP model. Moreover, the structure and activating interactions of this 2pBRAF_ATP model were found to be in agreement with previously reported information. Finally, the model was further validated by means of a molecular docking study with our previously developed lead compound I confirming that this ATP-containing, phosphorylated protein model is suitable for further structure-based design studies.

7.
J Med Chem ; 67(14): 11488-11521, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38955347

RESUMO

In recent years, synthetic lethality has been recognized as a solid paradigm for anticancer therapies. The discovery of a growing number of synthetic lethal targets has led to a significant expansion in the use of synthetic lethality, far beyond poly(ADP-ribose) polymerase inhibitors used to treat BRCA1/2-defective tumors. In particular, molecular targets within DNA damage response have provided a source of inhibitors that have rapidly reached clinical trials. This Perspective focuses on the most recent progress in synthetic lethal targets and their inhibitors, within and beyond the DNA damage response, describing their design and associated therapeutic strategies. We will conclude by discussing the current challenges and new opportunities for this promising field of research, to stimulate discussion in the medicinal chemistry community, allowing the investigation of synthetic lethality to reach its full potential.


Assuntos
Antineoplásicos , Dano ao DNA , Neoplasias , Mutações Sintéticas Letais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/genética , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química , Dano ao DNA/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/química , Animais
8.
Eur J Med Chem ; 265: 116114, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38194775

RESUMO

The BRCA2-RAD51 interaction remains an intriguing target for cancer drug discovery due to its vital role in DNA damage repair mechanisms, which cancer cells become particularly reliant on. Moreover, RAD51 has many synthetically lethal partners, including PARP1-2, which can be exploited to induce synthetic lethality in cancer. In this study, we established a 19F-NMR-fragment based approach to identify RAD51 binders, leading to two initial hits. A subsequent SAR program identified 46 as a low micromolar inhibitor of the BRCA2-RAD51 interaction. 46 was tested in different pancreatic cancer cell lines, to evaluate its ability to inhibit the homologous recombination DNA repair pathway, mediated by BRCA2-RAD51 and trigger synthetic lethality in combination with the PARP inhibitor talazoparib, through the induction of apoptosis. Moreover, we further analyzed the 46/talazoparib combination in 3D pancreatic cancer models. Overall, 46 showed its potential as a tool to evaluate the RAD51/PARP1-2 synthetic lethality mechanism, along with providing a prospect for further inhibitors development.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Antineoplásicos/química , Proteína BRCA2/antagonistas & inibidores , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/química , Rad51 Recombinase/antagonistas & inibidores , Rad51 Recombinase/metabolismo , Mutações Sintéticas Letais
9.
Cancers (Basel) ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980703

RESUMO

In recent years, the RAD52 protein has been highlighted as a mediator of many DNA repair mechanisms. While RAD52 was initially considered to be a non-essential auxiliary factor, its inhibition has more recently been demonstrated to be synthetically lethal in cancer cells bearing mutations and inactivation of specific intracellular pathways, such as homologous recombination. RAD52 is now recognized as a novel and critical pharmacological target. In this review, we comprehensively describe the available structural and functional information on RAD52. The review highlights the pathways in which RAD52 is involved and the approaches to RAD52 inhibition. We discuss the multifaceted role of this protein, which has a complex, dynamic, and functional 3D superstructural arrangement. This complexity reinforces the need to further investigate and characterize RAD52 to solve a challenging mechanistic puzzle and pave the way for a robust drug discovery campaign.

10.
Nat Prod Res ; 37(8): 1310-1320, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34865573

RESUMO

The fungal endophyte Aspergillus sp. strain FVL2, isolated from the traditional medicinal fennel plant, Foeniculum vulgare, was investigated for secondary metabolites. Fermentation on rice medium followed by chromatographic separation delivered three new natural products, 7-demethyl-neosulochrin (1), fumigaclavine I (3) and N-benzoyl-tryptophan (6) together with further 14 known metabolites, 1-O-methyl-sulochrin-4'-sulfate, questin, laccaic acid, isorhodoptilometrin, fumigaclavine A, fumigaclavine C, fumitremorgin C, fumigaquinazoline C, tryptoquivaline J, trypacidin, 3'-O-demethyl-sulochrin, 1-O-methyl-sulochrin, protocatechuic acid, and vermelone. The chemical structures of the new metabolites were determined by NMR spectroscopy and ESI HR mass spectrometry. For fumigaclavine I, we observed the partial deuterium transfer from the solvent to the enol form with a remarkable high stereo selectivity. The discovery of the new seco-anthraquinone 7-demethyl-neosulochrin (1) revealed a second type of ring cleavage by a questin oxygenase. The discovery of diverse secondary metabolites broadens the chemical space of Aspergillus.


Assuntos
Foeniculum , Endófitos/química , Aspergillus/química , Benzoatos/metabolismo
11.
J Proteomics ; 288: 104983, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37536521

RESUMO

BRCA2 and RAD51 are two proteins that play a central role in homologous recombination (HR) and DNA double strand break (DSB) repair. BRCA2 assists RAD51 fibrillation and defibrillation through binding with its eight BRC repeats, with BRC4 being one of the most efficient and best characterized. RAD51 inactivation by small molecules has been proposed as a strategy to impair BRCA2/RAD51 binding and, ultimately, the HR pathway, with the aim of making cancer cells more sensitive to PARP inhibitors (PARPi). This strategy, which mimics a synthetic lethality (SL) approach, has been successfully performed in vitro by using the myristoylated derivative of BRC4 (myr-BRC4), designed for a more efficient cell entry. The present study applies a method to obtain a proteomic fingerprint after cellular treatment with the myr-BRC4 peptide using a mass spectroscopy (MS) proteomic approach. (Data are available via ProteomeXchange with identifier PXD042696.) We performed a comparative proteomic profiling of the myr-BRC4 treated vs. untreated BxPC-3 pancreatic cancer cells and evaluated the differential expression of proteins. Among the identified proteins, we focused our attention on proteins shared by both the RAD51 and the BRCA2 interactomes, and on those whose reduction showed high statistical significance. Three downregulated proteins were identified (FANCI, FANCD2, and RPA3), and protein downregulation was confirmed through immunoblotting analysis, validating the MS approach. Our results suggest that, being a direct consequence of myr-BRC4 treatment, the detection of FANCD2, FANCI, and RPA3 downregulation could be used as an indicator for monitoring HR impairment. SIGNIFICANCE: RAD51's inhibition has gained increasing attention because of its possible implications in personalized medicine through the SL approach. Chemical disruption of protein-protein interactions (PPIs) between RAD51 and BRCA2, or some of its partner proteins, could potentiate PARPi DNA damage-induced cell death. This could have application for difficult to treat cancers, such as BRCA-competent and olaparib (PARPi) resistant pancreatic adenocarcinoma. Despite RAD51 being a widely studied target, researchers still lack detailed mechanistic information. This has stifled progress in the field with only a few RAD51 inhibitors having been identified, none of which have gained regulatory approval. Nevertheless, the peptide BRC4 is one of the most specific and best characterized RAD51 binder and inhibitor reported to date. Our study is the first to report the proteomic fingerprint consequent to cellular treatment of myr-BRC4, to offer a reference for the discovery of specific protein/pathway alterations within DNA damage repair. Our results suggest that, being a direct consequence of myr-BRC4 treatment, and ultimately ofBRCA2/RAD51 disruption, the detection of FANCD2, FANCI, and RPA3 downregulation could be used as an indicator for monitoring DNA damage repair impairment and therefore be used to potentiate the development of new effective therapeutic strategies.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Rad51 Recombinase/química , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteômica , Peptídeos/metabolismo , Neoplasias Pancreáticas
12.
Life Sci ; 290: 120236, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953891

RESUMO

AIMS: We have recently described a novel guanidinium-based compound, VP79s, which induces cytotoxicity in various cancer cell lines. Here, we aim to investigate the activity of VP79s and associated mechanisms of action in multiple myeloma (MM) cells in vitro and ex vivo. MAIN METHODS: The effects of VP79s on cell viability and induction of apoptosis was examined in a panel of drug-sensitive and drug-resistant MM cell lines, as well as ex vivo patient samples and normal donor lymphocytes and platelets. Cell signaling pathways associated with the biological effects of VP79s were analysed by immunoblotting and flow cytometry. Gene expression changes were assessed by quantitative real-time PCR analysis. KEY FINDINGS: VP79s was found to rapidly inhibit both constitutively active and IL-6-induced STAT3 signaling with concurrent downregulation of the IL-6 receptors, CD130 and CD126. VP79s induced a rapid and dose-dependent downregulation of anti-apoptotic Bcl-2 family member, myeloid cell leukaemia-1 (MCL-1). VP79s enhanced bortezomib induced cell death and was also found to overcome bone marrow stromal cell induced drug resistance. VP79s exhibited activity in ex vivo patient samples at concentrations which had no effect on peripheral blood mononuclear cells, lymphocytes and platelets isolated from healthy donors. SIGNIFICANCE: As VP79s resulted in rapid inhibition of the key IL-6/STAT3 signaling pathway and downregulation of MCL-1 expression with subsequent selective anti-myeloma activity, VP79s may be a potential therapeutic agent with a novel mechanism of action in MM cells.


Assuntos
Guanidina/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/genética , Guanidina/análogos & derivados , Humanos , Interleucina-6/metabolismo , Janus Quinase 1/metabolismo , Janus Quinases/metabolismo , Leucemia/tratamento farmacológico , Leucócitos Mononucleares/metabolismo , Mieloma Múltiplo/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células Mieloides , Fator de Transcrição STAT3/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371382

RESUMO

We previously identified a guanidinium-based lead compound that inhibited BRAF through a hypothetic type-III allosteric mechanism. Considering the pharmacophore identified in this lead compound (i.e., "lipophilic group", "di-substituted guanidine", "phenylguanidine polar end"), several modifications were investigated to improve its cytotoxicity in different cancer cell lines. Thus, several lipophilic groups were explored, the di-substituted guanidine was replaced by a secondary amine and the phenyl ring in the polar end was substituted by a pyridine. In a structure-based design approach, four representative derivatives were docked into an in-house model of an active triphosphate-containing BRAF protein, and the interactions established were analysed. Based on these computational studies, a variety of derivatives was synthesized, and their predicted drug-like properties calculated. Next, the effect on cell viability of these compounds was assessed in cell line models of promyelocytic leukaemia and breast, cervical and colorectal carcinomas. The potential of a selection of these compounds as apoptotic agents was assessed by screening in the promyelocytic leukaemia cell line HL-60. The toxicity against non-tumorigenic epithelial MCF10A cells was also investigated. These studies allowed for several structure-activity relationships to be derived. Investigations on the mechanism of action of representative compounds suggest a divergent effect on inhibition of the MAPK/ERK signalling pathway.

14.
Medchemcomm ; 10(9): 1531-1549, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31673314

RESUMO

Increased levels of reactive oxygen species (ROS) have been associated with numerous pathophysiological conditions including cancer and inflammation and the ROS stimulus constitutes a potential trigger for drug delivery strategies. Over the past decade, a number of ROS-sensitive functionalities have been identified with the purpose of introducing disease-targeting properties into small molecule drugs - a prodrug strategy that offers a promising approach for increasing the selectivity and efficacy of treatments. This review will provide an overview of the ROS-responsive prodrugs developed to date. A discussion on the current progress and limitations is provided along with a reflection on the unanswered questions that need to be addressed in order to advance this novel approach to the clinic.

15.
Eur J Med Chem ; 181: 111544, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374420

RESUMO

There is a growing interest in the cancer cell growth inhibitory effects of organotin (IV) compounds and, accordingly, a new series of dimethyl-, di-(n-butyl)-, diphenyl- and chloro-phenyl tin(IV) complexes with a Schiff base core were prepared. Their binding to DNA was assessed by UV thermal denaturation showing no interaction and by UV-vis titration exhibiting moderate interaction by intercalation. Complexes having n-butyl substituents were more potent and cytotoxic against human leukemia, breast and cervical cancer cell lines than other organotin(IV) complexes tested. Unfortunately, some of these compounds showed similar cytotoxicity in a non-cancerous cell line. We may conclude that cytotoxic activity was dependent on the nature (lipophilicity and size, according to the structure-activity relationship studies) and substitution pattern on the different structures. These results may aid in the rational design of metallodrugs, expanding the scope of organotin complexes in formulating new metal based drugs with dibutyl moieties.


Assuntos
Antineoplásicos/farmacologia , Compostos Orgânicos de Estanho/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Células HeLa , Humanos , Células MCF-7 , Estrutura Molecular , Compostos Orgânicos de Estanho/síntese química , Compostos Orgânicos de Estanho/química , Relação Estrutura-Atividade
16.
Medchemcomm ; 9(4): 735-743, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108964

RESUMO

Considering our hypothesis that the guanidinium moiety in the protein kinase type III inhibitor 1 interacts with a phosphate of ATP within the hinge region, the nature of the interactions established between a model isouronium and the phosphate groups of ATP was computationally analysed indicating that an isouronium derivative of 1 will interact in a similar manner with ATP. Thus, a number of compounds were prepared to assess the effect of the guanidinium/isouronium substitution on cancer cell growth; additionally, the molecular shortening and conformational change induced by replacing the di-substituted guanidine-linker of 1 by an amide was explored. The effect of these compounds on cell viability was tested in human leukaemia, breast cancer and cervical cancer cell lines and the resulting IC50 values were compared with those of the lead compound 1. Replacement of the di-substituted guanidine-linker by an amide results in the loss of cytotoxicity; however, substitution of the mono-substituted guanidinium by an isouronium cation seems to be beneficial for cell growth inhibition. Additionally, the effect of these compounds on the MAPK/ERK pathway was studied by means of Western blotting and the results indicate that the isouronium derivative 2 decreases the levels of phosphorylated, and thus activated, ERK (pERK) both in leukaemia and breast cancer cells, whereas lead compound 1 only shows an effect on pERK levels in breast cancer cells. This confirms that both compounds could interfere with the MAPK/ERK pathway although other targets cannot be ruled out.

17.
J Med Chem ; 61(8): 3503-3515, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29605999

RESUMO

A series of novel hydrogen peroxide sensitive prodrugs of methotrexate (MTX) and aminopterin (AMT) were synthesized and evaluated for therapeutic efficacy in mice with collagen induced arthritis (CIA) as a model of chronic rheumatoid arthritis (RA). The prodrug strategy selected is based on ROS-labile 4-methylphenylboronic acid promoieties linked to the drugs via a carbamate linkage or a direct C-N bond. Activation under pathophysiological concentrations of H2O2 proved to be effective, and prodrug candidates were selected in agreement with relevant in vitro physicochemical and pharmacokinetic assays. Selected candidates showed moderate to good solubility, high chemical and enzymatic stability, and therapeutic efficacy comparable to the parent drugs in the CIA model. Importantly, the prodrugs displayed the expected safer toxicity profile and increased therapeutic window compared to MTX and AMT while maintaining a comparable therapeutic efficacy, which is highly encouraging for future use in RA patients.


Assuntos
Aminopterina/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Peróxido de Hidrogênio/química , Metotrexato/análogos & derivados , Metotrexato/uso terapêutico , Pró-Fármacos/uso terapêutico , Aminopterina/síntese química , Aminopterina/farmacocinética , Aminopterina/toxicidade , Animais , Antirreumáticos/síntese química , Antirreumáticos/farmacocinética , Antirreumáticos/toxicidade , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/metabolismo , Ácidos Borônicos/síntese química , Ácidos Borônicos/farmacocinética , Ácidos Borônicos/uso terapêutico , Ácidos Borônicos/toxicidade , Colágeno Tipo II/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Masculino , Metotrexato/farmacocinética , Metotrexato/toxicidade , Camundongos Endogâmicos DBA , Microssomos Hepáticos/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Pró-Fármacos/toxicidade , Solubilidade
18.
Eur J Med Chem ; 156: 738-746, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30048923

RESUMO

Methotrexate (MTX) is the standard of care in the treatment of rheumatoid arthritis (RA), a common autoimmune disease that is characterized by chronic inflammation in the synovial membrane of joints. Unfortunately, MTX suffers from high discontinuation rates due to a large variability in efficacy and, in particular, adverse effects. As inflammation is associated with elevated levels of reactive oxygen species (ROS) like H2O2, we propose to improve treatment through site-selective delivery of MTX to inflammatory tissue by use of a H2O2 sensitive MTX prodrug. To establish proof proof-of-concept, two novel H2O2 sensitive, thiazolidinone-based MTX prodrugs were synthesized and evaluated for this purpose. MTX-γ-thiazolidinone (MTX-γ-TZ) exhibited the most promising properties - good to high chemical and metabolic stability, excellent aqueous solubility, while being activated when subjected to patho-physiological concentrations of H2O2. In vivo, MTX-γ-TZ exhibited comparable efficacy to MTX in a murine collagen type II-induced arthritis (CIA) model while treated mice showed indications of reduced toxicity as their body weight decreased less towards the end of the study, compared to the MTX-treated group.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Metotrexato/análogos & derivados , Metotrexato/uso terapêutico , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Metotrexato/farmacocinética , Camundongos , Pró-Fármacos/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Tiazolidinedionas/química , Tiazolidinedionas/farmacocinética , Tiazolidinedionas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA