Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(11): e1011567, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976328

RESUMO

Studies investigating neural information processing often implicitly ask both, which processing strategy out of several alternatives is used and how this strategy is implemented in neural dynamics. A prime example are studies on predictive coding. These often ask whether confirmed predictions about inputs or prediction errors between internal predictions and inputs are passed on in a hierarchical neural system-while at the same time looking for the neural correlates of coding for errors and predictions. If we do not know exactly what a neural system predicts at any given moment, this results in a circular analysis-as has been criticized correctly. To circumvent such circular analysis, we propose to express information processing strategies (such as predictive coding) by local information-theoretic quantities, such that they can be estimated directly from neural data. We demonstrate our approach by investigating two opposing accounts of predictive coding-like processing strategies, where we quantify the building blocks of predictive coding, namely predictability of inputs and transfer of information, by local active information storage and local transfer entropy. We define testable hypotheses on the relationship of both quantities, allowing us to identify which of the assumed strategies was used. We demonstrate our approach on spiking data collected from the retinogeniculate synapse of the cat (N = 16). Applying our local information dynamics framework, we are able to show that the synapse codes for predictable rather than surprising input. To support our findings, we estimate quantities applied in the partial information decomposition framework, which allow to differentiate whether the transferred information is primarily bottom-up sensory input or information transferred conditionally on the current state of the synapse. Supporting our local information-theoretic results, we find that the synapse preferentially transfers bottom-up information.


Assuntos
Encéfalo , Cognição , Rede Nervosa , Sinapses
2.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876505

RESUMO

How can neural networks learn to efficiently represent complex and high-dimensional inputs via local plasticity mechanisms? Classical models of representation learning assume that feedforward weights are learned via pairwise Hebbian-like plasticity. Here, we show that pairwise Hebbian-like plasticity works only under unrealistic requirements on neural dynamics and input statistics. To overcome these limitations, we derive from first principles a learning scheme based on voltage-dependent synaptic plasticity rules. Here, recurrent connections learn to locally balance feedforward input in individual dendritic compartments and thereby can modulate synaptic plasticity to learn efficient representations. We demonstrate in simulations that this learning scheme works robustly even for complex high-dimensional inputs and with inhibitory transmission delays, where Hebbian-like plasticity fails. Our results draw a direct connection between dendritic excitatory-inhibitory balance and voltage-dependent synaptic plasticity as observed in vivo and suggest that both are crucial for representation learning.


Assuntos
Simulação por Computador , Aprendizagem/fisiologia , Modelos Biológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais
3.
PLoS Comput Biol ; 18(11): e1010678, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36445932

RESUMO

To date, it is still impossible to sample the entire mammalian brain with single-neuron precision. This forces one to either use spikes (focusing on few neurons) or to use coarse-sampled activity (averaging over many neurons, e.g. LFP). Naturally, the sampling technique impacts inference about collective properties. Here, we emulate both sampling techniques on a simple spiking model to quantify how they alter observed correlations and signatures of criticality. We describe a general effect: when the inter-electrode distance is small, electrodes sample overlapping regions in space, which increases the correlation between the signals. For coarse-sampled activity, this can produce power-law distributions even for non-critical systems. In contrast, spike recordings do not suffer this particular bias and underlying dynamics can be identified. This may resolve why coarse measures and spikes have produced contradicting results in the past.


Assuntos
Encéfalo , Neurônios , Animais , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Mamíferos
4.
Neural Comput ; 35(1): 27-37, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36283047

RESUMO

How are visuomotor mismatch responses in primary visual cortex embedded into cortical processing? We here show that mismatch responses can be understood as the result of a cooperation of motor and visual areas to jointly explain optic flow. This cooperation requires that optic flow is not explained redundantly by both areas, meaning that optic flow inputs to V1 that are predictable from motor neurons should be canceled (i.e., explained away). As a result, neurons in V1 represent only external causes of optic flow, which could allow the animal to easily detect movements that are independent of its own locomotion. We implement the proposed model in a spiking neural network, where coding errors are computed in dendrites and synaptic weights are learned with voltage-dependent plasticity rules. We find that both positive and negative mismatch responses arise, providing an alternative to the prevailing idea that visuomotor mismatch responses are linked to dedicated neurons for error computation. These results also provide a new perspective on several other recent observations of cross-modal neural interactions in cortex.


Assuntos
Córtex Visual , Animais , Córtex Visual/fisiologia , Neurônios/fisiologia , Redes Neurais de Computação , Movimento/fisiologia , Estimulação Luminosa
5.
PLoS Comput Biol ; 17(6): e1008927, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061837

RESUMO

Information processing can leave distinct footprints on the statistics of neural spiking. For example, efficient coding minimizes the statistical dependencies on the spiking history, while temporal integration of information may require the maintenance of information over different timescales. To investigate these footprints, we developed a novel approach to quantify history dependence within the spiking of a single neuron, using the mutual information between the entire past and current spiking. This measure captures how much past information is necessary to predict current spiking. In contrast, classical time-lagged measures of temporal dependence like the autocorrelation capture how long-potentially redundant-past information can still be read out. Strikingly, we find for model neurons that our method disentangles the strength and timescale of history dependence, whereas the two are mixed in classical approaches. When applying the method to experimental data, which are necessarily of limited size, a reliable estimation of mutual information is only possible for a coarse temporal binning of past spiking, a so-called past embedding. To still account for the vastly different spiking statistics and potentially long history dependence of living neurons, we developed an embedding-optimization approach that does not only vary the number and size, but also an exponential stretching of past bins. For extra-cellular spike recordings, we found that the strength and timescale of history dependence indeed can vary independently across experimental preparations. While hippocampus indicated strong and long history dependence, in visual cortex it was weak and short, while in vitro the history dependence was strong but short. This work enables an information-theoretic characterization of history dependence in recorded spike trains, which captures a footprint of information processing that is beyond time-lagged measures of temporal dependence. To facilitate the application of the method, we provide practical guidelines and a toolbox.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Córtex Visual/fisiologia , Simulação por Computador , Hipocampo/citologia , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Córtex Visual/citologia
6.
PLoS Comput Biol ; 17(3): e1008773, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684101

RESUMO

Epileptic seizures are characterized by abnormal and excessive neural activity, where cortical network dynamics seem to become unstable. However, most of the time, during seizure-free periods, cortex of epilepsy patients shows perfectly stable dynamics. This raises the question of how recurring instability can arise in the light of this stable default state. In this work, we examine two potential scenarios of seizure generation: (i) epileptic cortical areas might generally operate closer to instability, which would make epilepsy patients generally more susceptible to seizures, or (ii) epileptic cortical areas might drift systematically towards instability before seizure onset. We analyzed single-unit spike recordings from both the epileptogenic (focal) and the nonfocal cortical hemispheres of 20 epilepsy patients. We quantified the distance to instability in the framework of criticality, using a novel estimator, which enables an unbiased inference from a small set of recorded neurons. Surprisingly, we found no evidence for either scenario: Neither did focal areas generally operate closer to instability, nor were seizures preceded by a drift towards instability. In fact, our results from both pre-seizure and seizure-free intervals suggest that despite epilepsy, human cortex operates in the stable, slightly subcritical regime, just like cortex of other healthy mammalians.


Assuntos
Epilepsia/fisiopatologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Lobo Temporal , Eletroencefalografia , Humanos , Processamento de Sinais Assistido por Computador , Lobo Temporal/fisiologia , Lobo Temporal/fisiopatologia
7.
PLoS Comput Biol ; 17(9): e1009288, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473693

RESUMO

Mass vaccination offers a promising exit strategy for the COVID-19 pandemic. However, as vaccination progresses, demands to lift restrictions increase, despite most of the population remaining susceptible. Using our age-stratified SEIRD-ICU compartmental model and curated epidemiological and vaccination data, we quantified the rate (relative to vaccination progress) at which countries can lift non-pharmaceutical interventions without overwhelming their healthcare systems. We analyzed scenarios ranging from immediately lifting restrictions (accepting high mortality and morbidity) to reducing case numbers to a level where test-trace-and-isolate (TTI) programs efficiently compensate for local spreading events. In general, the age-dependent vaccination roll-out implies a transient decrease of more than ten years in the average age of ICU patients and deceased. The pace of vaccination determines the speed of lifting restrictions; Taking the European Union (EU) as an example case, all considered scenarios allow for steadily increasing contacts starting in May 2021 and relaxing most restrictions by autumn 2021. Throughout summer 2021, only mild contact restrictions will remain necessary. However, only high vaccine uptake can prevent further severe waves. Across EU countries, seroprevalence impacts the long-term success of vaccination campaigns more strongly than age demographics. In addition, we highlight the need for preventive measures to reduce contagion in school settings throughout the year 2021, where children might be drivers of contagion because of them remaining susceptible. Strategies that maintain low case numbers, instead of high ones, reduce infections and deaths by factors of eleven and five, respectively. In general, policies with low case numbers significantly benefit from vaccination, as the overall reduction in susceptibility will further diminish viral spread. Keeping case numbers low is the safest long-term strategy because it considerably reduces mortality and morbidity and offers better preparedness against emerging escape or more contagious virus variants while still allowing for higher contact numbers (freedom) with progressing vaccinations.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinação em Massa , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Criança , Pré-Escolar , União Europeia/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Vacinação em Massa/legislação & jurisprudência , Vacinação em Massa/estatística & dados numéricos , Pessoa de Meia-Idade , Adulto Jovem
8.
Artigo em Alemão | MEDLINE | ID: mdl-34328524

RESUMO

After the global outbreak of the COVID-19 pandemic, an infection dynamic of immense extent developed. Since then, numerous measures have been taken to bring the infection under control. This was very successful in the spring of 2020, while the number of infections rose sharply the following autumn. To predict the occurrence of infections, epidemiological models are used. These are in principle a very valuable tool in pandemic management. However, they still partly need to be based on assumptions regarding the transmission routes and possible drivers of the infection dynamics. Despite numerous individual approaches, systematic epidemiological data are still lacking with which, for example, the effectiveness of individual measures could be quantified. Such information generated in studies is needed to enable reliable predictions regarding the further course of the pandemic. Thereby, the complexity of the models could develop hand in hand with the complexity of the available data. In this article, after delineating two basic classes of models, the contribution of epidemiological models to the assessment of various central aspects of the pandemic, such as the reproduction rate, the number of unreported cases, infection fatality rate, and the consideration of regionality, is shown. Subsequently, the use of the models to quantify the impact of measures and the effects of the "test-trace-isolate" strategy is described. In the concluding discussion, the limitations of such modelling approaches are juxtaposed with their advantages.


Assuntos
COVID-19 , Modelos Estatísticos , Pandemias , COVID-19/epidemiologia , Alemanha/epidemiologia , Humanos
9.
Inter Econ ; 56(4): 234-236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34376870

RESUMO

Escape variants can cause new waves of COVID-19 outbreaks and put vaccination strategies at risk. To prevent or delay the global spread of these waves, virus mobility needs to be minimised through screening and testing strategies, which should also cover vaccinated people. The costs of these strategies are minimal compared to the costs to health, society and the economy from another wave.

10.
PLoS Comput Biol ; 14(5): e1006081, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29813052

RESUMO

The finding of power law scaling in neural recordings lends support to the hypothesis of critical brain dynamics. However, power laws are not unique to critical systems and can arise from alternative mechanisms. Here, we investigate whether a common time-varying external drive to a set of Poisson units can give rise to neuronal avalanches and exhibit apparent criticality. To this end, we analytically derive the avalanche size and duration distributions, as well as additional measures, first for homogeneous Poisson activity, and then for slowly varying inhomogeneous Poisson activity. We show that homogeneous Poisson activity cannot give rise to power law distributions. Inhomogeneous activity can also not generate perfect power laws, but it can exhibit approximate power laws with cutoffs that are comparable to those typically observed in experiments. The mechanism of generating apparent criticality by time-varying external fields, forces or input may generalize to many other systems like dynamics of swarms, diseases or extinction cascades. Here, we illustrate the analytically derived effects for spike recordings in vivo and discuss approaches to distinguish true from apparent criticality. Ultimately, this requires causal interventions, which allow separating internal system properties from externally imposed ones.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Encéfalo/fisiologia , Eletroencefalografia , Haplorrinos , Humanos , Macaca , Distribuição de Poisson , Fatores de Tempo
11.
PLoS Comput Biol ; 13(6): e1005511, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28570661

RESUMO

The disruption of coupling between brain areas has been suggested as the mechanism underlying loss of consciousness in anesthesia. This hypothesis has been tested previously by measuring the information transfer between brain areas, and by taking reduced information transfer as a proxy for decoupling. Yet, information transfer is a function of the amount of information available in the information source-such that transfer decreases even for unchanged coupling when less source information is available. Therefore, we reconsidered past interpretations of reduced information transfer as a sign of decoupling, and asked whether impaired local information processing leads to a loss of information transfer. An important prediction of this alternative hypothesis is that changes in locally available information (signal entropy) should be at least as pronounced as changes in information transfer. We tested this prediction by recording local field potentials in two ferrets after administration of isoflurane in concentrations of 0.0%, 0.5%, and 1.0%. We found strong decreases in the source entropy under isoflurane in area V1 and the prefrontal cortex (PFC)-as predicted by our alternative hypothesis. The decrease in source entropy was stronger in PFC compared to V1. Information transfer between V1 and PFC was reduced bidirectionally, but with a stronger decrease from PFC to V1. This links the stronger decrease in information transfer to the stronger decrease in source entropy-suggesting reduced source entropy reduces information transfer. This conclusion fits the observation that the synaptic targets of isoflurane are located in local cortical circuits rather than on the synapses formed by interareal axonal projections. Thus, changes in information transfer under isoflurane seem to be a consequence of changes in local processing more than of decoupling between brain areas. We suggest that source entropy changes must be considered whenever interpreting changes in information transfer as decoupling.


Assuntos
Anestésicos Inalatórios/farmacologia , Estado de Consciência , Isoflurano/farmacologia , Processos Mentais/efeitos dos fármacos , Inconsciência , Anestesia , Animais , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , Feminino , Furões , Córtex Pré-Frontal/efeitos dos fármacos , Inconsciência/induzido quimicamente , Inconsciência/fisiopatologia
16.
Brain Cogn ; 112: 25-38, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26475739

RESUMO

In many neural systems anatomical motifs are present repeatedly, but despite their structural similarity they can serve very different tasks. A prime example for such a motif is the canonical microcircuit of six-layered neo-cortex, which is repeated across cortical areas, and is involved in a number of different tasks (e.g. sensory, cognitive, or motor tasks). This observation has spawned interest in finding a common underlying principle, a 'goal function', of information processing implemented in this structure. By definition such a goal function, if universal, cannot be cast in processing-domain specific language (e.g. 'edge filtering', 'working memory'). Thus, to formulate such a principle, we have to use a domain-independent framework. Information theory offers such a framework. However, while the classical framework of information theory focuses on the relation between one input and one output (Shannon's mutual information), we argue that neural information processing crucially depends on the combination of multiple inputs to create the output of a processor. To account for this, we use a very recent extension of Shannon Information theory, called partial information decomposition (PID). PID allows to quantify the information that several inputs provide individually (unique information), redundantly (shared information) or only jointly (synergistic information) about the output. First, we review the framework of PID. Then we apply it to reevaluate and analyze several earlier proposals of information theoretic neural goal functions (predictive coding, infomax and coherent infomax, efficient coding). We find that PID allows to compare these goal functions in a common framework, and also provides a versatile approach to design new goal functions from first principles. Building on this, we design and analyze a novel goal function, called 'coding with synergy', which builds on combining external input and prior knowledge in a synergistic manner. We suggest that this novel goal function may be highly useful in neural information processing.


Assuntos
Encéfalo/fisiologia , Objetivos , Teoria da Informação , Rede Nervosa/fisiologia , Humanos , Modelos Neurológicos
19.
PLoS Comput Biol ; 9(3): e1002985, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555220

RESUMO

Neuronal activity differs between wakefulness and sleep states. In contrast, an attractor state, called self-organized critical (SOC), was proposed to govern brain dynamics because it allows for optimal information coding. But is the human brain SOC for each vigilance state despite the variations in neuronal dynamics? We characterized neuronal avalanches--spatiotemporal waves of enhanced activity--from dense intracranial depth recordings in humans. We showed that avalanche distributions closely follow a power law--the hallmark feature of SOC--for each vigilance state. However, avalanches clearly differ with vigilance states: slow wave sleep (SWS) shows large avalanches, wakefulness intermediate, and rapid eye movement (REM) sleep small ones. Our SOC model, together with the data, suggested first that the differences are mediated by global but tiny changes in synaptic strength, and second, that the changes with vigilance states reflect small deviations from criticality to the subcritical regime, implying that the human brain does not operate at criticality proper but close to SOC. Independent of criticality, the analysis confirms that SWS shows increased correlations between cortical areas, and reveals that REM sleep shows more fragmented cortical dynamics.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Modelos Neurológicos , Neurônios/fisiologia , Fases do Sono/fisiologia , Vigília/fisiologia , Adulto , Biologia Computacional , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Trends Neurosci ; 46(1): 45-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577388

RESUMO

Top-down feedback in cortex is critical for guiding sensory processing, which has prominently been formalized in the theory of hierarchical predictive coding (hPC). However, experimental evidence for error units, which are central to the theory, is inconclusive and it remains unclear how hPC can be implemented with spiking neurons. To address this, we connect hPC to existing work on efficient coding in balanced networks with lateral inhibition and predictive computation at apical dendrites. Together, this work points to an efficient implementation of hPC with spiking neurons, where prediction errors are computed not in separate units, but locally in dendritic compartments. We then discuss the correspondence of this model to experimentally observed connectivity patterns, plasticity, and dynamics in cortex.


Assuntos
Dendritos , Neurônios , Humanos , Neurônios/fisiologia , Córtex Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA