Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047426

RESUMO

Metabolic adaptations are a hallmark of cancer and may be exploited to develop novel diagnostic and therapeutic tools. Only about 50% of the patients who undergo thyroidectomy due to suspicion of thyroid cancer actually have the disease, highlighting the diagnostic limitations of current tools. We explored the possibility of using non-invasive blood tests to accurately diagnose thyroid cancer. We analyzed blood and thyroid tissue samples from two independent cohorts of patients undergoing thyroidectomy at the Hospital Universitario 12 de Octubre (Madrid, Spain). As expected, histological comparisons of thyroid cancer and hyperplasia revealed higher proliferation and apoptotic rates and enhanced vascular alterations in the former. Notably, they also revealed increased levels of membrane-bound phosphorylated AKT, suggestive of enhanced glycolysis, and alterations in mitochondrial sub-cellular distribution. Both characteristics are common metabolic adaptations in primary tumors. These data together with reduced mtDNA copy number and elevated levels of the mitochondrial antioxidant PRX3 in cancer tissue samples suggest the presence of mitochondrial oxidative stress. In plasma, cancer patients showed higher levels of cfDNA and mtDNA. Of note, mtDNA plasma levels inversely correlated with those in the tissue, suggesting that higher death rates were linked to lower mtDNA copy number. In PBMCs, cancer patients showed higher levels of PGC-1α, a positive regulator of mitochondrial function, but this increase was not associated with a corresponding induction of its target genes, suggesting a reduced activity in cancer patients. We also observed a significant difference in the PRDX3/PFKFB3 correlation at the gene expression level, between carcinoma and hyperplasia patients, also indicative of increased systemic metabolic stress in cancer patients. The correlation of mtDNA levels in tissue and PBMCs further stressed the interconnection between systemic and tumor metabolism. Evaluation of the mitochondrial gene ND1 in plasma, PBMCs and tissue samples, suggested that it could be a good biomarker for systemic oxidative metabolism, with ND1/mtDNA ratio positively correlating in PBMCs and tissue samples. In contrast, ND4 evaluation would be informative of tumor development, with ND4/mtDNA ratio specifically altered in the tumor context. Taken together, our data suggest that metabolic dysregulation in thyroid cancer can be monitored accurately in blood samples and might be exploited for the accurate discrimination of cancer from hyperplasia.


Assuntos
Mitocôndrias , Neoplasias da Glândula Tireoide , Humanos , Hiperplasia/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Glicólise
2.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918863

RESUMO

Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.


Assuntos
Suscetibilidade a Doenças , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitofagia , Envelhecimento , Animais , Biomarcadores , Regulação da Expressão Gênica , Homeostase , Humanos , Estilo de Vida , Especificidade de Órgãos , Transdução de Sinais , Ubiquitina/metabolismo
3.
Nutr Cancer ; 72(5): 801-807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31433266

RESUMO

Patients who suffer from cancer are at a higher risk of complications when they experience malnutrition. Evidence shows that oral nutritional supplements favor the healing process. The main objective of this study was to evaluate the efficacy of preoperative oral nutritional intervention in oncological patients undergoing surgery. This study assessed retrospectively 55 cancer patients who previously had undergone abdominal surgery and did not have receive pre-surgical nutritional support (control group), and prospectively 30 oncological patients undergoing gastrointestinal surgery and received pre-surgical high-protein nutritional support (experimental group). All patients had to have a NRS 2002 score ≥ 3. Analytical and clinical parameters were analyzed and the NRS 2002 screening test was performed. Post-operative assessments of surgical wound complications were also carried out to determine the impact of nutrition support. Pre-surgical nutritional interventions reduced the incidence and severity of wound complications as well as the length of hospital stays. Only 26.7% of patients in the experimental group had complications compared to 60% of the control group (P = 0.003). We conclude that pre-surgical nutritional interventions of patients undergoing surgery can improve post-surgical patient outcomes of malnourished patients.


Assuntos
Neoplasias/cirurgia , Apoio Nutricional/métodos , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Ferida Cirúrgica/prevenção & controle , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Nutrição Enteral/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Cuidados Pré-Operatórios/métodos , Estudos Retrospectivos , Ferida Cirúrgica/etiologia , Ferida Cirúrgica/patologia , Adulto Jovem
4.
J Pathol ; 247(1): 48-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30221360

RESUMO

Obesity is associated with local and systemic complications in acute pancreatitis. PPARγ coactivator 1α (PGC-1α) is a transcriptional coactivator and master regulator of mitochondrial biogenesis that exhibits dysregulation in obese subjects. Our aims were: (1) to study PGC-1α levels in pancreas from lean or obese rats and mice with acute pancreatitis; and (2) to determine the role of PGC-1α in the inflammatory response during acute pancreatitis elucidating the signaling pathways regulated by PGC-1α. Lean and obese Zucker rats and lean and obese C57BL6 mice were used first; subsequently, wild-type and PGC-1α knockout (KO) mice with cerulein-induced pancreatitis were used to assess the inflammatory response and expression of target genes. Ppargc1a mRNA and protein levels were markedly downregulated in pancreas of obese rats and mice versus lean animals. PGC-1α protein levels increased in pancreas of lean mice with acute pancreatitis, but not in obese mice with pancreatitis. Interleukin-6 (Il6) mRNA levels were dramatically upregulated in pancreas of PGC-1α KO mice after cerulein-induced pancreatitis in comparison with wild-type mice with pancreatitis. Edema and the inflammatory infiltrate were more intense in pancreas from PGC-1α KO mice than in wild-type mice. The lack of PGC-1α markedly enhanced nuclear translocation of phospho-p65 and recruitment of p65 to Il6 promoter. PGC-1α bound phospho-p65 in pancreas during pancreatitis in wild-type mice. Glutathione depletion in cerulein-induced pancreatitis was more severe in KO mice than in wild-type mice. PGC-1α KO mice with pancreatitis, but not wild-type mice, exhibited increased myeloperoxidase activity in the lungs, together with alveolar wall thickening and collapse, which were abrogated by blockade of the IL-6 receptor glycoprotein 130 with LMT-28. In conclusion, obese rodents exhibit PGC-1α deficiency in the pancreas. PGC-1α acts as selective repressor of nuclear factor-κB (NF-κB) towards IL-6 in pancreas. PGC-1α deficiency markedly enhanced NF-κB-mediated upregulation of Il6 in pancreas in pancreatitis, leading to a severe inflammatory response. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Interleucina-6/metabolismo , NF-kappa B/metabolismo , Obesidade/metabolismo , Pâncreas/metabolismo , Pancreatite/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Ceruletídeo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Obesidade/genética , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fosforilação , Ratos Zucker , Transdução de Sinais , Ácido Taurocólico , Fator de Transcrição RelA/metabolismo , Regulação para Cima
5.
Int J Mol Sci ; 20(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344857

RESUMO

Current treatments for diabetic retinopathy (DR) target late stages when vision has already been significantly affected. Accumulating evidence suggests that neuroinflammation plays a major role in the pathogenesis of DR, resulting in the disruption of the blood-retinal barrier. Suppressors of cytokine signaling (SOCS) are cytokine-inducible proteins that function as a negative feedback loop regulating cytokine responses. On this basis, the aim of the present study was to evaluate the effect of a SOCS1-derived peptide administered by eye drops (2 weeks) on retinal neuroinflammation and early microvascular abnormalities in a db/db mouse model. In brief, we found that SOCS1-derived peptide significantly reduced glial activation and neural apoptosis induced by diabetes, as well as retinal levels of proinflammatory cytokines. Moreover, a significant improvement of electroretinogram parameters was observed, thus revealing a clear impact of the histological findings on global retinal function. Finally, SOCS1-derived peptide prevented the disruption of the blood-retinal barrier. Overall, our results suggest that topical administration of SOCS1-derived peptide is effective in preventing retinal neuroinflammation and early microvascular impairment. These findings could open up a new strategy for the treatment of early stages of DR.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Inflamação/tratamento farmacológico , Proteína 1 Supressora da Sinalização de Citocina/farmacologia , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Eletrorretinografia , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , Soluções Oftálmicas/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Retina/efeitos dos fármacos , Retina/patologia , Proteína 1 Supressora da Sinalização de Citocina/química
6.
Angiogenesis ; 19(2): 217-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26951478

RESUMO

Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) is a regulator of mitochondrial oxidative metabolism and reactive oxygen species (ROS) homeostasis that is known to be inactivated in diabetic subjects. This study aimed to investigate the contribution of PGC-1α inactivation to the development of oxygen-induced retinopathy. We analyzed retinal vascular development in PGC-1α(-/-) mice. Retinal vasculature of PGC-1α(-/-) mice showed reduced pericyte coverage, a de-structured vascular plexus, and low perfusion. Exposure of PGC-1α(-/-) mice to hyperoxia during retinal vascular development exacerbated these vascular abnormalities, with extensive retinal hemorrhaging and highly unstructured areas as compared with wild-type mice. Structural analysis demonstrated a reduction in membrane-bound VE-cadherin, which was suggestive of defective intercellular junctions. Interestingly, PGC-1α(-/-) retinas showed a constitutive activation of the VEGF-A signaling pathway. This phenotype could be partially reversed by antioxidant administration, indicating that elevated production of ROS in the absence of PGC-1α could be a relevant factor in the alteration of the VEGF-A signaling pathway. Collectively, our findings suggest that PGC-1α control of ROS homeostasis plays an important role in the regulation of de novo angiogenesis and is required for vascular stability.


Assuntos
Vasos Sanguíneos/patologia , Estresse Oxidativo , Pericitos/metabolismo , Pericitos/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Camundongos Endogâmicos C57BL , Oxigênio , Perfusão , Retina/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
7.
Transfusion ; 56(7): 1857-65, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27112920

RESUMO

BACKGROUND: Aprotinin has been reapproved for use in Europe and in Canada. We sought to determine if its reintroduction was still pertinent given the widespread administration of tranexamic acid, another antifibrinolytic shown to reduce bleeding and transfusions. STUDY DESIGN AND METHODS: After institutional review board approval, we examined the cardiac surgery database (2012-2015; 3322 patients). Major transfusion was defined as 4 or more red blood cell units. A stratified multivariate logistic regression analysis identified predictors of major transfusion; 1064 patients were matched by propensity score to compare outcomes of patients with or without major transfusion. RESULTS: Cardiopulmonary bypass (CPB) was used in 2342 patients; 98.9% received tranexamic acid versus 15.2% (149/980) in off-pump coronary artery bypass graft patients. Major transfusion was required in 758 patients (23%). Age, low body mass index, low preoperative hemoglobin or platelet count, recent use of P2Y12 receptor blockers, chronic kidney disease, NYHA functional class, left ventricular ejection fraction of less than 30%, prior cardiac surgery, urgency, type of cardiac surgery, and duration of CPB were all independent predictors of major transfusions (all p < 0.05). Major transfusion was associated with a more than threefold increase in mortality (7.1% vs. 2.1%; p < 0.001) and increases in major adverse events (p < 0.001). CONCLUSIONS: Despite the use of tranexamic acid, 23% of cardiac surgery patients require a major transfusion. We identified predictors of major transfusion and showed that major transfusion is associated with important increases in mortality and morbidity. We conclude that there is still a need for an effective and safe blood-sparing drug in cardiac surgery.


Assuntos
Transfusão de Sangue/estatística & dados numéricos , Procedimentos Cirúrgicos Cardíacos/métodos , Hemorragia/terapia , Ácido Tranexâmico/uso terapêutico , Antifibrinolíticos/uso terapêutico , Aprotinina/uso terapêutico , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Procedimentos Cirúrgicos Cardíacos/mortalidade , Bases de Dados Factuais , Hemorragia/etiologia , Hemorragia/mortalidade , Humanos , Assistência Perioperatória/métodos , Hemorragia Pós-Operatória/prevenção & controle , Pontuação de Propensão , Estudos Retrospectivos , Fatores de Risco
8.
Nat Genet ; 35(1): 25-31, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12923533

RESUMO

We targeted the locus encoding the cyclin-dependent kinase 2 (CDK2) by homologous recombination in mouse embryonic stem (ES) cells. Embryonic fibroblasts lacking CDK2 proliferate normally and become immortal after continuous passage in culture. Elimination of a conditional Cdk2 allele in immortal cells does not have a significant effect on proliferation. Cdk2-/- mice are viable and survive for up to two years, indicating that CDK2 is also dispensable for proliferation and survival of most cell types. But CDK2 is essential for completion of prophase I during meiotic cell division in male and female germ cells, an unforeseen role for this cell cycle kinase.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Quinases Ciclina-Dependentes/fisiologia , Meiose/fisiologia , Mitose/fisiologia , Oócitos/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Testículo/enzimologia , Animais , Células Cultivadas , Quinase 2 Dependente de Ciclina , Feminino , Fibroblastos , Masculino , Camundongos , Camundongos Knockout , Oócitos/citologia , Ovário/embriologia , Inoculações Seriadas , Espermatogênese , Testículo/citologia , Testículo/embriologia
9.
Eur J Cardiothorac Surg ; 63(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805638

RESUMO

OBJECTIVES: The main objective was to assess whether a composite coronary artery bypass grafting strategy including a saphenous vein graft bridge to distribute left internal mammary artery outflow provides non-inferior patency rates compared to conventional grafting surgery with separated left internal mammary artery to left anterior descending coronary graft and aorto-coronary saphenous vein grafts to other anterolateral targets. METHODS: All patients underwent isolated grafting surgery with cardiopulmonary bypass and received ≥2 grafts/patients on the anterolateral territory. The graft patency (i.e. non-occluded) was assessed using multislice spiral computed tomography at 1 year. RESULTS: From 2012 to 2021, 208 patients were randomized to a bridge (n = 105) or conventional grafting strategy (n = 103). Patient characteristics were comparable between groups. The anterolateral graft patency was non-inferior in the composite bridge compared to conventional grafting strategy at 1 year [risk difference 0.7% (90% confidence interval -4.8 to 6.2%)]. The graft patency to the left anterior descending coronary was no different between groups (P = 0.175). Intraoperatively, the bridge group required shorter vein length for anterolateral targets (P < 0.001) and exhibited greater Doppler flow in the mammary artery pedicle (P = 0.004). The composite outcome of death, myocardial infarction or target vessel reintervention at 30 days was no different (P = 0.164). CONCLUSIONS: Anterolateral graft patency of the composite bridge grafting strategy is non-inferior to the conventional grafting strategy at 1 year. This novel grafting strategy is safe, efficient, associated with several advantages including better mammary artery flow and shorter vein requirement, and could be a valuable alternative to conventional grafting strategies. Ten-year clinical follow-up is underway. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01585285.


Assuntos
Ponte de Artéria Coronária , Ponte de Artéria Coronária/métodos , Veia Safena/cirurgia , Resultado do Tratamento , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Artéria Torácica Interna/cirurgia
10.
Mol Ther Nucleic Acids ; 34: 102041, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37842165

RESUMO

Diabetic kidney disease (DKD) is a common microvascular complication of diabetes, a global health issue. Hyperglycemia, in concert with cytokines, activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway to induce inflammation and oxidative stress contributing to renal damage. There is evidence of microRNA-155 (miR-155) involvement in diabetes complications, but the underlying mechanisms are unclear. In this study, gain- and loss-of-function experiments were conducted to investigate the interplay between miR-155-5p and suppressor of cytokine signaling 1 (SOCS1) in the regulation of the JAK/STAT pathway during renal inflammation and DKD. In experimental models of mesangial injury and diabetes, miR-155-5p expression correlated inversely with SOCS1 and positively with albuminuria and expression levels of cytokines and prooxidant genes. In renal cells, miR-155-5p mimic downregulated SOCS1 and promoted STAT1/3 activation, cytokine expression, and cell proliferation and migration. Conversely, both miR-155-5p antagonism and SOCS1 overexpression protected cells from inflammation and hyperglycemia damage. In vivo, SOCS1 gene delivery decreased miR-155-5p and kidney injury in diabetic mice. Moreover, therapeutic inhibition of miR-155-5p suppressed STAT1/3 activation and alleviated albuminuria, mesangial damage, and renal expression of inflammatory and fibrotic genes. In conclusion, modulation of the miR-155/SOCS1 axis protects kidneys against diabetic damage, thus highlighting its potential as therapeutic target for DKD.

11.
Redox Biol ; 54: 102353, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35777200

RESUMO

Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Animais , Homeostase , Gordura Intra-Abdominal/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo , Proteômica
12.
Clin Transl Med ; 11(7): e463, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34323424

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA), a degenerative vascular pathology characterized by permanent dilation of the aorta, is considered a chronic inflammatory disease involving innate/adaptive immunity. However, the functional role of antibody-dependent immune response against antigens present in the damaged vessel remains unresolved. We hypothesized that engagement of immunoglobulin G (IgG) Fc receptors (FcγR) by immune complexes (IC) in the aortic wall contributes to AAA development. We therefore evaluated FcγR expression in AAA lesions and analysed whether inhibition of FcγR signaling molecules (γ-chain and Syk kinase) influences AAA formation in mice. METHODS: FcγR gene/protein expression was assessed in human and mouse AAA tissues. Experimental AAA was induced by aortic elastase perfusion in wild-type (WT) mice and γ-chain knockout (γKO) mice (devoid of activating FcγR) in combination with macrophage adoptive transfer or Syk inhibitor treatment. To verify the mechanisms of FcγR in vitro, vascular smooth muscle cells (VSMC) and macrophages were stimulated with IgG IC. RESULTS: FcγR overexpression was detected in adventitia and media layers of human and mouse AAA. Elastase-perfused γKO mice exhibited a decrease in AAA incidence, aortic dilation, elastin degradation, and VSMC loss. This was associated with (1) reduced infiltrating leukocytes and immune deposits in AAA lesions, (2) inflammatory genes and metalloproteinases downregulation, (3) redox balance restoration, and (4) converse phenotype of anti-inflammatory macrophage M2 and contractile VSMC. Adoptive transfer of FcγR-expressing macrophages aggravated aneurysm in γKO mice. In vitro, FcγR deficiency attenuated inflammatory gene expression, oxidative stress, and phenotypic switch triggered by IC. Additionally, Syk inhibition prevented IC-mediated cell responses, reduced inflammation, and mitigated AAA formation. CONCLUSION: Our findings provide insight into the role and mechanisms mediating IgG-FcγR-associated inflammation and aortic wall injury in AAA, which might represent therapeutic targets against AAA disease.


Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Receptores de IgG/metabolismo , Animais , Complexo Antígeno-Anticorpo/efeitos adversos , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Modelos Animais de Doenças , Humanos , Cadeias gama de Imunoglobulina/genética , Cadeias gama de Imunoglobulina/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Estresse Oxidativo , Elastase Pancreática/efeitos adversos , Pirimidinas/uso terapêutico , Receptores de IgG/genética , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo
13.
Br J Pharmacol ; 178(3): 564-581, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33227156

RESUMO

BACKGROUND AND PURPOSE: Abdominal aortic aneurysm (AAA) is a multifactorial disease characterized by chronic inflammation, oxidative stress and proteolytic activity in the aortic wall. Targeting JAK/signal transducer and activator of transcription (JAK/STAT) pathway is a promising strategy for chronic inflammatory diseases. We investigated the vasculo-protective role of suppressor of cytokine signalling-1 (SOCS1), the negative JAK/STAT regulator, in experimental AAA. EXPERIMENTAL APPROACH: A synthetic, cell permeable peptide (S1) mimic of SOCS1 kinase inhibitory domain to suppress STAT activation was evaluated in the well-established mouse model of elastase-induced AAA by monitoring changes in aortic diameter, cellular composition and gene expression in abdominal aorta. S1 function was further evaluated in cultured vascular smooth muscle cells (VSMC) and macrophages exposed to elastase or elastin-derived peptides. KEY RESULTS: S1 peptide prevented AAA development, evidenced by reduced incidence of AAA, aortic dilation and elastin degradation, partial restoration of medial VSMC and decreased inflammatory cells and oxidative stress in AAA tissue. Mechanistically, S1 suppressed STAT1/3 activation in aorta, down-regulated cytokines, metalloproteinases and altered the expression of cell differentiation markers by favouring anti-inflammatory M2 macrophage and contractile VSMC phenotypes. In vitro, S1 suppressed the expression of inflammatory and oxidative genes, reduced cell migration and reversed the phenotypic switch of macrophages and VSMC. By contrast, SOCS1 silencing promoted inflammatory response. CONCLUSION AND IMPLICATIONS: This preclinical study demonstrates the therapeutic potential of SOCS1-derived peptide to halt AAA progression by suppressing JAK/STAT-mediated inflammation and aortic dilation. S1 peptide may therefore be a valuable option for the treatment of AAA.


Assuntos
Aneurisma da Aorta Abdominal , Proteína 1 Supressora da Sinalização de Citocina/uso terapêutico , Animais , Aorta Abdominal , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/prevenção & controle , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso , Transdução de Sinais
14.
Cir Cir ; 89(1): 101-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33498073

RESUMO

The haemocholecyst is a rare disease with a low index of suspiction, which is even lower if the patient does not present risk factors. Likewise, the course of this pathology with a haemoperitoneum without vesicular perforation is equally infrequent. We present an unusual case in which the diagnosis of the patient was carried out intraoperatively. We consider that communicating these unusual cases in clinical practice helps to increase clinical suspiction and prompt diagnosis.


El hemocolecisto es una patología poco frecuente y con un índice bajo de sospecha, que todavía es menor si el paciente no presenta factores de riesgo. Asimismo, su curso con clínica de hemoperitoneo sin perforación vesicular es igualmente infrecuente. Presentamos un caso poco habitual en el cual el diagnóstico de la paciente se llevó a cabo intraoperatoriamente. Consideramos que comunicar estos casos poco habituales en la práctica clínica colabora a aumentar la sospecha clínica y el diagnóstico precoz.


Assuntos
Colecistite Aguda , Doenças da Vesícula Biliar , Colecistite Aguda/complicações , Hemoperitônio/etiologia , Humanos , Doenças Raras
15.
Chromosoma ; 118(5): 617-32, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19557426

RESUMO

Synapsis of homologous chromosomes is a key meiotic event, mediated by a large proteinaceous structure termed the synaptonemal complex. Here, we describe a role in meiosis for the murine death-inducer obliterator (Dido) gene. The Dido gene codes for three proteins that recognize trimethylated histone H3 lysine 4 through their amino-terminal plant homeodomain domain. DIDO3, the largest of the three isoforms, localizes to the central region of the synaptonemal complex in germ cells. DIDO3 follows the distribution of the central region protein SYCP1 in Sycp3-/- spermatocytes, which lack the axial elements of the synaptonemal complex. This indicates that synapsis is a requirement for DIDO3 incorporation. Interestingly, DIDO3 is missing from the synaptonemal complex in Atm mutant spermatocytes, which form synapses but show persistent trimethylation of histone H3 lysine 4. In order to further address a role of epigenetic modifications in DIDO3 localization, we made a mutant of the Dido gene that produces a truncated DIDO3 protein. This truncated protein, which lacks the histone-binding domain, is incorporated in the synaptonemal complex irrespective of histone trimethylation status. DIDO3 protein truncation in Dido mutant mice causes mild meiotic defects, visible as gaps in the synaptonemal complex, but allows for normal meiotic progression. Our results indicate that histone H3 lysine 4 demethylation modulates DIDO3 localization in meiosis and suggest epigenetic regulation of the synaptonemal complex.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Meiose/fisiologia , Complexo Sinaptonêmico/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/genética , Epigênese Genética , Lisina/metabolismo , Masculino , Metilação , Camundongos , Espermatócitos/metabolismo , Fatores de Transcrição/genética
16.
PLoS Genet ; 3(2): e28, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17319746

RESUMO

The cohesin complexes play a key role in chromosome segregation during both mitosis and meiosis. They establish sister chromatid cohesion between duplicating DNA molecules during S-phase, but they also have an important role during postreplicative double-strand break repair in mitosis, as well as during recombination between homologous chromosomes in meiosis. An additional function in meiosis is related to the sister kinetochore cohesion, so they can be pulled by microtubules to the same pole at anaphase I. Data about the dynamics of cohesin subunits during meiosis are scarce; therefore, it is of great interest to characterize how the formation of the cohesin complexes is achieved in order to understand the roles of the different subunits within them. We have investigated the spatio-temporal distribution of three different cohesin subunits in prophase I grasshopper spermatocytes. We found that structural maintenance of chromosome protein 3 (SMC3) appears as early as preleptotene, and its localization resembles the location of the unsynapsed axial elements, whereas radiation-sensitive mutant 21 (RAD21) (sister chromatid cohesion protein 1, SCC1) and stromal antigen protein 1 (SA1) (sister chromatid cohesion protein 3, SCC3) are not visualized until zygotene, since they are located in the synapsed regions of the bivalents. During pachytene, the distribution of the three cohesin subunits is very similar and all appear along the trajectories of the lateral elements of the autosomal synaptonemal complexes. However, whereas SMC3 also appears over the single and unsynapsed X chromosome, RAD21 and SA1 do not. We conclude that the loading of SMC3 and the non-SMC subunits, RAD21 and SA1, occurs in different steps throughout prophase I grasshopper meiosis. These results strongly suggest the participation of SMC3 in the initial cohesin axis formation as early as preleptotene, thus contributing to sister chromatid cohesion, with a later association of both RAD21 and SA1 subunits at zygotene to reinforce and stabilize the bivalent structure. Therefore, we speculate that more than one cohesin complex participates in the sister chromatid cohesion at prophase I.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Gafanhotos/genética , Prófase Meiótica I , Proteínas Nucleares/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Células Cultivadas , Pareamento Cromossômico , Cromossomos/metabolismo , Drosophila , Gafanhotos/metabolismo , Masculino , Modelos Biológicos , Subunidades Proteicas/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismo , Testículo/metabolismo , Distribuição Tecidual , Coesinas
17.
Antioxidants (Basel) ; 9(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824091

RESUMO

The chronic activation of the Janus kinase/signal transducer and activator of the transcription (JAK/STAT) pathway is linked to oxidative stress, inflammation and cell proliferation. Suppressors of cytokine signaling (SOCS) proteins negatively regulate the JAK/STAT, and SOCS1 possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that KIR-SOCS1 mimetics can be considered valuable therapeutics in several disorders (e.g., diabetes, neurological disorders and atherosclerosis). Herein, we investigated the antioxidant and atheroprotective effects of PS5, a peptidomimetic of KIR-SOCS1, both in vitro (vascular smooth muscle cells and macrophages) and in vivo (atherosclerosis mouse model) by analyzing gene expression, intracellular O2•- production and atheroma plaque progression and composition. PS5 was revealed to be able to attenuate NADPH oxidase (NOX1 and NOX4) and pro-inflammatory gene expression, to upregulate antioxidant genes and to reduce atheroma plaque size, lipid content and monocyte/macrophage accumulation. These findings confirm that KIR-SOCS1-based drugs could be excellent antioxidant agents to contrast atherosclerosis.

18.
Redox Biol ; 29: 101396, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31926622

RESUMO

PGC-1α controls, to a large extent, the capacity of cells to respond to changing nutritional requirements and energetic demands. The key role of metabolic reprogramming in tumor development has highlighted the potential role of PGC-1α in cancer. To investigate how loss of PGC-1α activity in primary cells impacts the oncogenic characteristics of spontaneously immortalized cells, and the mechanisms involved, we used the classic 3T3 protocol to generate spontaneously immortalized mouse embryonic fibroblasts (iMEFs) from wild-type (WT) and PGC-1α knockout (KO) mice and analyzed their oncogenic potential in vivo and in vitro. We found that PGC-1α KO iMEFs formed larger and more proliferative primary tumors than WT counterparts, and fostered the formation of lung metastasis by B16 melanoma cells. These characteristics were associated with the reduced capacity of KO iMEFs to respond to cell contact inhibition, in addition to an increased ability to form colonies in soft agar, an enhanced migratory capacity, and a reduced growth factor dependence. The mechanistic basis of this phenotype is likely associated with the observed higher levels of nuclear ß-catenin and c-myc in KO iMEFs. Evaluation of the metabolic adaptations of the immortalized cell lines identified a decrease in oxidative metabolism and an increase in glycolytic flux in KO iMEFs, which were also more dependent on glutamine for their survival. Furthermore, glucose oxidation and tricarboxylic acid cycle forward flux were reduced in KO iMEF, resulting in the induction of compensatory anaplerotic pathways. Indeed, analysis of amino acid and lipid patterns supported the efficient use of tricarboxylic acid cycle intermediates to synthesize lipids and proteins to support elevated cell growth rates. All these characteristics have been observed in aggressive tumors and support a tumor suppressor role for PGC-1α, restraining metabolic adaptations in cancer.


Assuntos
Adaptação Fisiológica , Fibroblastos , Animais , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
19.
PLoS Genet ; 2(8): e136, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16934004

RESUMO

Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation.


Assuntos
Segregação de Cromossomos/fisiologia , Marsupiais/fisiologia , Prófase Meiótica I/fisiologia , Cromossomos Sexuais/metabolismo , Complexo Sinaptonêmico/fisiologia , Animais , Pareamento Cromossômico/fisiologia , Masculino , Marsupiais/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Espermatócitos/citologia , Espermatócitos/fisiologia , Telômero/genética
20.
Methods Mol Biol ; 1890: 61-76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30414145

RESUMO

All four FOXO isoforms have been shown to respond to changes in the cellular redox status of the cell, and regulate the expression of target genes that in turn can modulate the cellular oxidative status. However, the mechanisms involved are still controversial. It is clear though that redox regulation of FOXO factors occurs at different levels. The proteins themselves are redox-sensitive and their capacity to bind their target sites seems to be at least partially dependent on their oxidative status. Importantly, several of the cofactors that are known to regulate FOXO transcriptional activity are also sensitive to changes in the cellular redox status, in particular the deacetylase SirT1 is activated in response to reduced levels of reducing equivalents (increased NAD+/NADH+ ratio) and the coactivator PGC-1α is induced in response to increased cellular oxidative stress. Furthermore, nuclear localization of FOXO factors is also regulated by proteins that, like AKT, are themselves regulated directly or indirectly by the cellular levels of reactive oxygen and nitrogen species. In this technical review, we aim to update the current status of our knowledge of how to handle redox-regulated FOXO factor research in order to better understand FOXO biology.


Assuntos
Antioxidantes/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Oxirredução , Animais , Linhagem Celular , Sobrevivência Celular/genética , Fatores de Transcrição Forkhead/genética , Vetores Genéticos/genética , Humanos , Camundongos , Mutação , Estresse Oxidativo/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA