Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7947): 281-286, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755174

RESUMO

Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9-3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16-23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.


Assuntos
Recursos Naturais , Análise Espaço-Temporal , Áreas Alagadas , Humanos , Biodiversidade , China , Europa (Continente) , Recursos Naturais/provisão & distribuição , Estados Unidos , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI
2.
Sci Total Environ ; 950: 175259, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127208

RESUMO

Water resources play a crucial role in the global water cycle and are affected by human activities and climate change. However, the impacts of hydropower infrastructures on the surface water extent and volume cycle are not well known. We used a multi-satellite approach to quantify the surface water storage variations over the 2000-2020 period and relate these variations to climate-induced and anthropogenic factors over the whole basin. Our results highlight that dam operations have strongly modified the water regime of the Mekong River, exhibiting a 55 % decrease in the seasonal cycle amplitude of inundation extent (from 3178 km2 to 1414 km2) and a 70 % decrease in surface water volume (from 1109 km3 to 327 km3) over 2000-2020. In the floodplains of the Lower Mekong Basin, where rice is cultivated, there has been a decline in water residence time by 30 to 50 days. The recent commissioning of big dams (2010 and 2014) has allowed us to choose 2015 as a turning point year. Results show a trend inversion in rice production, from a rise of 40 % between 2000 and 2014 to a decline of 10 % between 2015 and 2020, and a strong reduction in aquaculture growth, from +730 % between 2000 and 2014, to +53 % between 2015 and 2020. All these results show the negative impact of dams on the Mekong basin, causing a 70 % decline in surface water volumes, with major repercussions for agriculture and fisheries over the period 2000-2020. Therefore, new future projects such as the Funan Techo canal in Cambodia, scheduled to start construction at the end of 2024, will particularly affect 1300 km2 of floodplains in the lower Mekong basin, with a reduction in the amount of water received, and other areas will be subjected to flooding. The human, material and economic damage could be catastrophic.

3.
Nat Commun ; 14(1): 6656, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863899

RESUMO

Evapotranspiration (ET) is a key process linking surface and atmospheric energy budgets, yet its drivers and patterns across wetlandscapes are poorly understood worldwide. Here we assess the ET dynamics in 12 wetland complexes across South America, revealing major differences under temperate, tropical, and equatorial climates. While net radiation is a dominant driver of ET seasonality in most environments, flooding also contributes strongly to ET in tropical and equatorial wetlands, especially in meeting the evaporative demand. Moreover, significant water losses through wetlands and ET differences between wetlands and uplands occur in temperate, more water-limited environments and in highly flooded areas such as the Pantanal, where slow river flood propagation drives the ET dynamics. Finally, floodplain forests produce the greatest ET in all environments except the Amazon River floodplains, where upland forests sustain high rates year round. Our findings highlight the unique hydrological functioning and ecosystem services provided by wetlands on a continental scale.


Assuntos
Ecossistema , Áreas Alagadas , Florestas , América do Sul , Água
4.
Nat Commun ; 13(1): 1967, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413953

RESUMO

Trade-offs between tree planting programs and wetland conservation are unclear. Here, we employ satellite-derived inundation data and a process-based land surface model (ORCHIDEE-Hillslope) to investigate the impacts of tree planting on wetland dynamics in China for 2000-2016 and the potential impacts of near-term tree planting activities for 2017-2035. We find that 160,000-190,000 km2 (25.3-25.6%) of historical tree planting over wetland grid cells has resulted in 1,300-1,500 km2 (0.3-0.4%) net wetland loss. Compared to moist southern regions, the dry northern and western regions show a much higher sensitivity of wetland reduction to tree planting. With most protected wetlands in China located in the drier northern and western basins, continuing tree planting scenarios are projected to lead to a > 10% wetland loss relative to 2000 across 4-8 out of 38 national wetland nature reserves. Our work shows how spatial optimization can help the balance of tree planting and wetland conservation targets.


Assuntos
Conservação dos Recursos Naturais , Áreas Alagadas , China , Conservação dos Recursos Naturais/métodos , Ecossistema , Árvores
5.
Biogeosciences ; 14(18): 4101-4124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29290755

RESUMO

A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed Solar-Induced Fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H and GPP from 2007 to 2015 at 1° × 1° spatial resolution and on monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analysing WECANN retrievals across three extreme drought and heatwave events demonstrates the capability of the retrievals in capturing the extent of these events. Uncertainty estimates of the retrievals are analysed and the inter-annual variability in average global and regional fluxes show the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA