Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(27): e202317468, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38572820

RESUMO

The formation of transient hybrid nanoscale metal species from homogeneous molecular precatalysts has been demonstrated by in situ NMR studies of catalytic reactions involving transition metals with N-heterocyclic carbene ligands (M/NHC). These hybrid structures provide benefits of both molecular complexes and nanoparticles, enhancing the activity, selectivity, flexibility, and regulation of active species. However, they are challenging to identify experimentally due to the unsuitability of standard methods used for homogeneous or heterogeneous catalysis. Utilizing a sophisticated solid-state NMR technique, we provide evidence for the formation of NHC-ligated catalytically active Pd nanoparticles (PdNPs) from Pd/NHC complexes during catalysis. The coordination of NHCs via C(NHC)-Pd bonding to the metal surface was first confirmed by observing the Knight shift in the 13C NMR spectrum of the frozen reaction mixture. Computational modeling revealed that as little as few NHC ligands are sufficient for complete ligation of the surface of the formed PdNPs. Catalytic experiments combined with in situ NMR studies confirmed the significant effect of surface covalently bound NHC ligands on the catalytic properties of the PdNPs formed by decomposition of the Pd/NHC complexes. This observation shows the crucial influence of NHC ligands on the activity and stability of nanoparticulate catalytic systems.

2.
Small ; 19(43): e2302999, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37381097

RESUMO

In this work, using a combination of scanning and transmission electron microscopy (SEM and TEM), the transformations of palladium-containing species in imidazolium ionic liquids in reaction mixtures of the Mizoroki-Heck reaction and in related organic media are studied to understand a challenging question of the relative reactivity of organic halides as key substrates in modern catalytic technologies. The microscopy technique detects the formation of a stable nanosized palladium phase under the action of an aryl (Ar) halide capable of forming microcompartments in an ionic liquid. For the first time, the correlation between the reactivity of the aryl halide and the microdomain structure is observed: Ar-I (well-developed microdomains) > Ar-Br (microphase present) > Ar-Cl (minor amount of microphase). Previously, it is assumed that molecular level factors, namely, carbon-halogen bond strength and the ease of bond breakage, are the sole factors determining the reactivity of aryl halides in catalytic transformations. The present work reports a new factor connected with the nature of the organic substrates used and their ability to form a microdomain structure and concentrate metallic species, highlighting the importance of considering both the molecular and microscale properties of the reaction mixtures.

3.
Chemphyschem ; 22(22): 2329-2335, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34397136

RESUMO

The influence of fluorination on the acid-base properties and the capacity of structurally related 6-5 bicyclic compounds - 1,3-benzodiazole 1, 1,2,3-benzotriazole 2 and 2,1,3-benzoselenadiazole 3 to σ-hole interactions, i. e. hydrogen (1 and 2) and chalcogen (3) bondings, is studied experimentally and computationally. The tetrafluorination increases the Brønsted acidity of the diazole and triazole scaffolds and the Lewis acidity of selenadiazole scaffold decreases the basicity. Increased Brønsted acidity facilitates anion binding via the formation of hydrogen bonds; particularly, tetrafluorinated derivative of 1 (compound 4) binds Cl- . Increased Lewis acidity of tetrafluorinated derivative of 3 (compound 10), however, is not enough for binding with Cl- and F- via chalcogen bonds in contrast to previously studied Te analog of 10. It is suggested that the maximum positive values of molecular electrostatic potential at the σ-holes, VS,max , can be a reasonable metric for design and synthesis of new anion receptors with selenadiazole-diazole/triazole hybrids as a special target. Related chlorinated compounds are also discussed.

4.
Dalton Trans ; 53(30): 12503-12518, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39011843

RESUMO

The electron-donating and electron-accepting properties of N-heterocyclic carbene (NHC) ligands play a pivotal role in governing their interactions with transition metals, thereby influencing the selectivity and reactivity in catalytic processes. Herein, we report the synthesis of Pd/NHCF and Ni/NHCF complexes, wherein the electronic parameters of the NHC ligands were systematically varied. By performing a series of controlled structure modifications, we elucidated the influence of the σ-donor and π-acceptor properties of NHC ligands on interactions with the transition metals Pd and Ni and, consequently, the catalytic behavior of Pd and Ni complexes. The present study deepens our understanding of NHC-metal interactions and provides novel information for the rational design of efficient catalysts for organic synthesis.

5.
Dalton Trans ; 52(13): 4122-4135, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36883531

RESUMO

Pd/NHC complexes (NHCs - N-heterocyclic carbenes) with electron-withdrawing halogen groups were prepared by developing an optimized synthetic procedure to access imidazolium salts and the corresponding metal complexes. Structural X-ray analysis and computational studies have been carried out to evaluate the effect of halogen and CF3 substituents on the Pd-NHC bond and have provided insight into the possible electronic effects on the molecular structure. The introduction of electron-withdrawing substituents changes the ratio of σ-/π-contributions to the Pd-NHC bond but does not affect the Pd-NHC bond energy. Here, we report the first optimized synthetic approach to access a comprehensive range of o-, m-, and p-XC6H4-substituted NHC ligands, including incorporation into Pd complexes (X = F, Cl, Br, CF3). The catalytic activity of the obtained Pd/NHC complexes was compared in the Mizoroki-Heck reaction. For substitution with halogen atoms, the following relative trend was observed: X = Br > F > Cl, and for all halogen atoms, the catalytic activity changed in the following order: m-X, p-X > o-X. Evaluation of the relative catalytic activity showed a significant increase in the catalyst performance in the case of Br and CF3 substituents compared to the unsubstituted Pd/NHC complex.

6.
Dalton Trans ; 51(25): 9843-9856, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35708172

RESUMO

The key problem of the instability of fluorine-containing diazadienes was addressed to perform the efficient synthesis of imidazolium salts containing fluorine substituents in the aryl groups. The subsequent reaction of fluorine-containing imidazolium compounds (NHCF) with palladium salts under simple conditions afforded new Pd/NHCF complexes. Computational and structural studies were performed to assess the effect of fluorine on the Pd-NHC bond and gave insight into the electronic effects in the molecule. The introduction of fluorine substituents into the aryl rings of the NHC ligands leads to a slight decrease in their σ-donor properties. At the same time, there is a slight increase in the π-acceptor capacity of NHCF. These two effects compensate for each other, so that the Pd-NHC bonding energy remains virtually unchanged. Another observed effect is associated with a slight weakening of the trans influence of the NHCF ligands, which is expressed in the strengthening of the Pd-Solv bond in (NHC)Pd(Solv) complexes. For the first time, a series of novel Pd/NHCF complexes were synthesized via a straightforward approach from fluorine-containing anilines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA