Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38627091

RESUMO

Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into how the endocrine system dynamically regulates aspects of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the global efficiency of large-scale brain networks in a woman sampled every 24 h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6 and 7 A.M. and nadir between 7 and 8 P.M. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 h across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, 17ß-estradiol-the primary form of estrogen-and cortisol. Standardized regression analyses revealed widespread associations between testosterone, estradiol, and cortisol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in the Dorsal Attention Network was coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and a naturally cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence in both sexes and to a heightened degree in the male. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are associated with patterns of whole-brain functional connectivity.


Assuntos
Encéfalo , Ritmo Circadiano , Estradiol , Hidrocortisona , Imageamento por Ressonância Magnética , Testosterona , Humanos , Masculino , Ritmo Circadiano/fisiologia , Estradiol/metabolismo , Adulto , Testosterona/metabolismo , Hidrocortisona/metabolismo , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Conectoma/métodos , Feminino , Adulto Jovem , Vias Neurais/fisiologia
2.
J Neurosci ; 44(38)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39147588

RESUMO

Circadian, infradian, and seasonal changes in steroid hormone secretion have been tied to changes in brain volume in several mammalian species. However, the relationship between circadian changes in steroid hormone production and rhythmic changes in brain morphology in humans is largely unknown. Here, we examined the relationship between diurnal fluctuations in steroid hormones and multiscale brain morphology in a precision imaging study of a male who completed 40 MRI and serological assessments at 7 A.M. and 8 P.M. over the course of a month, targeting hormone concentrations at their peak and nadir. Diurnal fluctuations in steroid hormones were tied to pronounced changes in global and regional brain morphology. From morning to evening, total brain volume, gray matter volume, and cortical thickness decreased, coincident with decreases in steroid hormone concentrations (testosterone, estradiol, and cortisol). In parallel, cerebrospinal fluid and ventricle size increased from A.M. to P.M. Global changes were driven by decreases within the occipital and parietal cortices. These findings highlight natural rhythms in brain morphology that keep time with the diurnal ebb and flow of steroid hormones.


Assuntos
Encéfalo , Ritmo Circadiano , Imageamento por Ressonância Magnética , Masculino , Humanos , Ritmo Circadiano/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Estradiol/sangue , Testosterona/sangue , Hidrocortisona/sangue , Adulto Jovem
3.
Front Neuroendocrinol ; 60: 100874, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002517

RESUMO

Women constitute half of the world's population, yet neuroscience research does not serve the sexes equally. Fifty years of preclinical animal evidence documents the tightly-coupled relationship between our endocrine and nervous systems, yet human neuroimaging studies rarely consider how endocrine factors shape the structural and functional architecture of the human brain. Here, we quantify several blind spots in neuroimaging research, which overlooks aspects of the human condition that impact women's health (e.g. the menstrual cycle, hormonal contraceptives, pregnancy, menopause). Next, we illuminate potential consequences of this oversight: today over 100 million women use oral hormonal contraceptives, yet relatively few investigations have systematically examined whether disrupting endogenous hormone production impacts the brain. We close by presenting a roadmap for progress, highlighting the University of California Women's Brain Initiative which is addressing unmet needs in women's health research.


Assuntos
Anticoncepcionais Orais , Saúde da Mulher , Feminino , Humanos , Menopausa , Ciclo Menstrual , Neuroimagem , Gravidez
4.
Neuroimage ; 220: 117125, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634592

RESUMO

The rhythmic production of sex steroid hormones is a central feature of the mammalian endocrine system. In rodents and nonhuman primates, sex hormones are powerful regulators of hippocampal subfield morphology. However, it remains unknown whether intrinsic fluctuations in sex hormones alter hippocampal morphology in the human brain. In a series of dense-sampling studies, we used high-resolution imaging of the medial temporal lobe (MTL) to determine whether endogenous fluctuations (Study 1) and exogenous manipulation (Study 2) of sex hormones alter MTL volume over time. Across the menstrual cycle, intrinsic fluctuations in progesterone were associated with volumetric changes in CA2/3, entorhinal, perirhinal, and parahippocampal cortex. Chronic progesterone suppression abolished these cycle-dependent effects and led to pronounced volumetric changes in entorhinal cortex and CA2/3 relative to freely cycling conditions. No associations with estradiol were observed. These results establish progesterone's ability to rapidly and dynamically shape MTL morphology across the human menstrual cycle.


Assuntos
Hipocampo/diagnóstico por imagem , Ciclo Menstrual/sangue , Progesterona/sangue , Lobo Temporal/diagnóstico por imagem , Anticoncepcionais Orais Combinados/farmacologia , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Hipocampo/anatomia & histologia , Humanos , Processamento de Imagem Assistida por Computador , Hormônio Luteinizante/sangue , Imageamento por Ressonância Magnética , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Lobo Temporal/anatomia & histologia , Adulto Jovem
5.
Neuroimage ; 220: 117091, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32621974

RESUMO

The brain is an endocrine organ, sensitive to the rhythmic changes in sex hormone production that occurs in most mammalian species. In rodents and nonhuman primates, estrogen and progesterone's impact on the brain is evident across a range of spatiotemporal scales. Yet, the influence of sex hormones on the functional architecture of the human brain is largely unknown. In this dense-sampling, deep phenotyping study, we examine the extent to which endogenous fluctuations in sex hormones alter intrinsic brain networks at rest in a woman who underwent brain imaging and venipuncture for 30 consecutive days. Standardized regression analyses illustrate estrogen and progesterone's widespread associations with functional connectivity. Time-lagged analyses examined the temporal directionality of these relationships and suggest that cortical network dynamics (particularly in the Default Mode and Dorsal Attention Networks, whose hubs are densely populated with estrogen receptors) are preceded-and perhaps driven-by hormonal fluctuations. A similar pattern of associations was observed in a follow-up study one year later. Together, these results reveal the rhythmic nature in which brain networks reorganize across the human menstrual cycle. Neuroimaging studies that densely sample the individual connectome have begun to transform our understanding of the brain's functional organization. As these results indicate, taking endocrine factors into account is critical for fully understanding the intrinsic dynamics of the human brain.


Assuntos
Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Ciclo Menstrual/fisiologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Conectoma , Anticoncepcionais Orais Combinados/administração & dosagem , Rede de Modo Padrão/efeitos dos fármacos , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Neuroimagem Funcional , Humanos , Hormônio Luteinizante/sangue , Imageamento por Ressonância Magnética , Ciclo Menstrual/sangue , Ciclo Menstrual/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Progesterona/sangue , Adulto Jovem
6.
Psychol Sci ; 27(7): 1036-42, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27207874

RESUMO

Some effects are statistically significant. Other effects do not reach the threshold of statistical significance and are sometimes described as "marginally significant" or as "approaching significance." Although the concept of marginal significance is widely deployed in academic psychology, there has been very little systematic examination of psychologists' attitudes toward these effects. Here, we report an observational study in which we investigated psychologists' attitudes concerning marginal significance by examining their language in over 1,500 articles published in top-tier cognitive, developmental, and social psychology journals. We observed a large change over the course of four decades in psychologists' tendency to describe a p value as marginally significant, and overall rates of use appear to differ across subfields. We discuss possible explanations for these findings, as well as their implications for psychological research.


Assuntos
Pesquisa Comportamental/normas , Ciência Cognitiva/normas , Psicologia do Desenvolvimento/normas , Psicologia Social/normas , Estatística como Assunto , Humanos
7.
bioRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746276

RESUMO

Human neuroimaging studies consistently show multimodal patterns of variability along a key principle of macroscale cortical organization - the sensorimotor-association (S-A) axis. However, little is known about day-to-day fluctuations in functional activity along this axis within an individual, including sex-specific neuroendocrine factors contributing to such transient changes. We leveraged data from two densely sampled healthy young adults, one female and one male, to investigate intra-individual daily variability along the S-A axis, which we computed as our measure of functional cortical organization by reducing the dimensionality of functional connectivity matrices. Daily variability was greatest in temporal limbic and ventral prefrontal regions in both participants, and was more strongly pronounced in the male subject. Next, we probed local- and system-level effects of steroid hormones and self-reported perceived stress on functional organization. Our findings revealed modest effects that differed between participants, hinting at subtle -potentially sex-specific- associations between neuroendocrine fluctuations and intra-individual variability along the S-A axis. In sum, our study points to neuroendocrine factors as possible modulators of intra-individual variability in functional brain organization, highlighting the need for further research in larger samples.

8.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38645226

RESUMO

Circadian, infradian, and seasonal changes in steroid hormone secretion have been tied to changes in brain volume in several mammalian species. However, the relationship between circadian changes in steroid hormone production and rhythmic changes in brain morphology in humans is largely unknown. Here, we examined the relationship between diurnal fluctuations in steroid hormones and multiscale brain morphology in a precision imaging study of a male who completed forty MRI and serological assessments at 7 A.M. and 8 P.M. over the course of a month, targeting hormone concentrations at their peak and nadir. Diurnal fluctuations in steroid hormones were tied to pronounced changes in global and regional brain morphology. From morning to evening, total brain volume, gray matter volume, and cortical thickness decreased, coincident with decreases in steroid hormone concentrations (testosterone, estradiol, and cortisol). In parallel, cerebrospinal fluid and ventricle size increased from A.M. to P.M. Global changes were driven by decreases within the occipital and parietal cortices. These findings highlight natural rhythms in brain morphology that keep time with the diurnal ebb and flow of steroid hormones.

9.
Nat Neurosci ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284962

RESUMO

Pregnancy is a period of profound hormonal and physiological changes experienced by millions of women annually, yet the neural changes unfolding in the maternal brain throughout gestation are not well studied in humans. Leveraging precision imaging, we mapped neuroanatomical changes in an individual from preconception through 2 years postpartum. Pronounced decreases in gray matter volume and cortical thickness were evident across the brain, standing in contrast to increases in white matter microstructural integrity, ventricle volume and cerebrospinal fluid, with few regions untouched by the transition to motherhood. This dataset serves as a comprehensive map of the human brain across gestation, providing an open-access resource for the brain imaging community to further explore and understand the maternal brain.

10.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38168195

RESUMO

Pregnancy is a period of profound hormonal and physiological change experienced by millions of women annually, yet the neural changes unfolding in the maternal brain throughout gestation have not been studied in humans. Leveraging precision imaging, we mapped neuroanatomical changes in an individual from preconception through two years postpartum. Pronounced decreases in gray matter volume and cortical thickness were evident across the brain, which stand in contrast to increases in white matter microstructural integrity, ventricle volume, and cerebrospinal fluid, with few regions untouched by the transition to motherhood. This dataset serves as the first comprehensive map of the human brain across gestation, providing an open-access resource for the brain imaging community to stimulate further exploration and discovery.

11.
bioRxiv ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39386637

RESUMO

Background: A key step towards understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organization at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organization of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex. Aims: We aimed to evaluate the impact of sex on the spatial organization of person-specific functional brain networks. Method: We leveraged person-specific atlases of functional brain networks defined using nonnegative matrix factorization in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalized additive models to uncover associations between sex and the spatial layout ("topography") of personalized functional networks (PFNs). Next, we trained support vector machines to classify participants' sex from multivariate patterns of PFN topography. Finally, we leveraged transcriptomic data from the Allen Human Brain Atlas to evaluate spatial correlations between sex differences in PFN topography and gene expression. Results: Sex differences in PFN topography were greatest in association networks including the fronto-parietal, ventral attention, and default mode networks. Machine learning models trained on participants' PFNs were able to classify participant sex with high accuracy. Brain regions with the greatest sex differences in PFN topography were enriched in expression of X-linked genes as well as genes expressed in astrocytes and excitatory neurons. Conclusions: Sex differences in PFN topography are robust, replicate across large-scale samples of youth, and are associated with expression patterns of X-linked genes. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.

12.
Netw Neurosci ; 7(3): 1181-1205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781152

RESUMO

Many studies have shown that the human endocrine system modulates brain function, reporting associations between fluctuations in hormone concentrations and brain connectivity. However, how hormonal fluctuations impact fast changes in brain network organization over short timescales remains unknown. Here, we leverage a recently proposed framework for modeling co-fluctuations between the activity of pairs of brain regions at a framewise timescale. In previous studies we showed that time points corresponding to high-amplitude co-fluctuations disproportionately contributed to the time-averaged functional connectivity pattern and that these co-fluctuation patterns could be clustered into a low-dimensional set of recurring "states." Here, we assessed the relationship between these network states and quotidian variation in hormone concentrations. Specifically, we were interested in whether the frequency with which network states occurred was related to hormone concentration. We addressed this question using a dense-sampling dataset (N = 1 brain). In this dataset, a single individual was sampled over the course of two endocrine states: a natural menstrual cycle and while the subject underwent selective progesterone suppression via oral hormonal contraceptives. During each cycle, the subject underwent 30 daily resting-state fMRI scans and blood draws. Our analysis of the imaging data revealed two repeating network states. We found that the frequency with which state 1 occurred in scan sessions was significantly correlated with follicle-stimulating and luteinizing hormone concentrations. We also constructed representative networks for each scan session using only "event frames"-those time points when an event was determined to have occurred. We found that the weights of specific subsets of functional connections were robustly correlated with fluctuations in the concentration of not only luteinizing and follicle-stimulating hormones, but also progesterone and estradiol.

13.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37905054

RESUMO

Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into the means through which our endocrine system regulates dynamic properties of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the functional efficiency of large-scale brain networks in a woman sampled every 24h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6-7am and nadir between 7-8pm. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 hours across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, cortisol, and estradiol. Standardized regression analyses revealed predominantly positive associations between testosterone, cortisol, and estradiol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in Dorsal Attention and Salience/Ventral Attention Networks were coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and naturally-cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence to a comparable degree in both sexes. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are tied to patterns of whole-brain functional connectivity.

14.
Curr Opin Behav Sci ; 40: 72-78, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35369044

RESUMO

The brain is an endocrine organ whose day-to-day function is tied to the rhythmic production of neuromodulatory hormones. Yet, traditional approaches to studying brain-hormone relationships in humans are often coarse in scope. By contrast, dense-sampling neuroimaging offers the unique ability to probe dynamic interactions between the nervous and endocrine systems. This review summarizes recent evidence of sex hormones' influence on structural and functional properties of the human brain. In particular, findings from the '28andMe' project suggest that estradiol modulates the topology of large-scale functional brain networks and progesterone rapidly shapes medial temporal lobe morphology across the menstrual cycle. This nascent body of work sets the stage for additional studies in larger cohorts. We end by discussing the potential of dense-sampling designs to further elucidate endocrine modulation of the brain, with implications for personalized medicine.

15.
Netw Neurosci ; 5(1): 125-144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688609

RESUMO

Sex steroid hormones have been shown to alter regional brain activity, but the extent to which they modulate connectivity within and between large-scale functional brain networks over time has yet to be characterized. Here, we applied dynamic community detection techniques to data from a highly sampled female with 30 consecutive days of brain imaging and venipuncture measurements to characterize changes in resting-state community structure across the menstrual cycle. Four stable functional communities were identified, consisting of nodes from visual, default mode, frontal control, and somatomotor networks. Limbic, subcortical, and attention networks exhibited higher than expected levels of nodal flexibility, a hallmark of between-network integration and transient functional reorganization. The most striking reorganization occurred in a default mode subnetwork localized to regions of the prefrontal cortex, coincident with peaks in serum levels of estradiol, luteinizing hormone, and follicle stimulating hormone. Nodes from these regions exhibited strong intranetwork increases in functional connectivity, leading to a split in the stable default mode core community and the transient formation of a new functional community. Probing the spatiotemporal basis of human brain-hormone interactions with dynamic community detection suggests that hormonal changes during the menstrual cycle result in temporary, localized patterns of brain network reorganization.

16.
Front Neurosci ; 15: 753820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955718

RESUMO

Brain dynamics have recently been shown to be modulated by rhythmic changes in female sex hormone concentrations across an entire menstrual cycle. However, many questions remain regarding the specific differences in information processing across spacetime between the two main follicular and luteal phases in the menstrual cycle. Using a novel turbulent dynamic framework, we studied whole-brain information processing across spacetime scales (i.e., across long and short distances in the brain) in two open-source, dense-sampled resting-state datasets. A healthy naturally cycling woman in her early twenties was scanned over 30 consecutive days during a naturally occurring menstrual cycle and under a hormonal contraceptive regime. Our results indicated that the luteal phase is characterized by significantly higher information transmission across spatial scales than the follicular phase. Furthermore, we found significant differences in turbulence levels between the two phases in brain regions belonging to the default mode, salience/ventral attention, somatomotor, control, and dorsal attention networks. Finally, we found that changes in estradiol and progesterone concentrations modulate whole-brain turbulent dynamics in long distances. In contrast, we reported no significant differences in information processing measures between the active and placebo phases in the hormonal contraceptive study. Overall, the results demonstrate that the turbulence framework is able to capture differences in whole-brain turbulent dynamics related to ovarian hormones and menstrual cycle stages.

17.
Sci Rep ; 10(1): 20732, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244032

RESUMO

The cerebellum contains the vast majority of neurons in the brain and houses distinct functional networks that constitute at least two homotopic maps of cerebral networks. It is also a major site of sex steroid hormone action. While the functional organization of the human cerebellum has been characterized, the influence of sex steroid hormones on intrinsic cerebellar network dynamics has yet to be established. Here we investigated the extent to which endogenous fluctuations in estradiol and progesterone alter functional cerebellar networks at rest in a woman densely sampled over a complete menstrual cycle (30 consecutive days). Edgewise regression analysis revealed robust negative associations between progesterone and cerebellar coherence. Graph theory metrics probed sex hormones' influence on topological brain states, revealing relationships between sex hormones and within-network integration in Ventral Attention, Dorsal Attention, and SomatoMotor Networks. Together these results suggest that the intrinsic dynamics of the cerebellum are intimately tied to day-by-day changes in sex hormones.


Assuntos
Cerebelo/fisiologia , Ciclo Menstrual/fisiologia , Adulto , Atenção/fisiologia , Cerebelo/metabolismo , Feminino , Hormônios Esteroides Gonadais/metabolismo , Humanos , Ciclo Menstrual/metabolismo , Progesterona/metabolismo , Adulto Jovem
18.
Front Hum Neurosci ; 13: 224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333434

RESUMO

A major challenge in neuroscience is to understand what happens to a brain as it ages. Such insights could make it possible to distinguish between individuals who will undergo typical aging and those at risk for neurodegenerative disease. Over the last quarter century, thousands of human brain imaging studies have probed the neural basis of age-related cognitive decline. "Aging" studies generally enroll adults over the age of 65, a historical precedent rooted in the average age of retirement. A consequence of this research tradition is that it overlooks one of the most significant neuroendocrine changes in a woman's life: the transition to menopause. The menopausal transition is marked by an overall decline in ovarian sex steroid production-up to 90% in the case of estradiol-a dramatic endocrine change that impacts multiple biological systems, including the brain. Despite sex differences in the risk for dementia, the influence that biological sex and sex hormones have on the aging brain is historically understudied, leaving a critical gap in our understanding of the aging process. In this Perspective article, we highlight the influence that endocrine factors have on the aging brain. We devote particular attention to the neural and cognitive changes that unfold in the middle decade of life, as a function of reproductive aging. We then consider emerging evidence from animal and human studies that other endocrine factors occurring earlier in life (e.g., pregnancy, hormonal birth control use) also shape the aging process. Applying a women's health lens to the study of the aging brain will advance knowledge of the neuroendocrine basis of cognitive aging and ensure that men and women get the full benefit of our research efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA