Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Oral Investig ; 27(7): 3741-3748, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269339

RESUMO

OBJECTIVES: To examine factors influencing the primary stability of dental implants when stabilized in over-sized osteotomies using a calcium phosphate-based adhesive cement was the objective. METHODS: Using implant removal torque measurements as a surrogate for primary stability, we examined the influence of implant design features (diameter, surface area, and thread design), along with cement gap size and curing time, on the resulting primary implant stability. RESULTS: Removal torque values scaled with implant surface area and increasing implant diameters. Cement gap size did not alter the median removal torque values; however, larger gaps were associated with an increased spread of the measured values. Among the removal torque values measured, all were found to be above 32 Ncm which is an insertion torque threshold value commonly recommended for immediate loading protocols. CONCLUSION: The adhesive cement show potential for offering primary implant stability for different dental implant designs. In this study, the primary parameters influencing the measured removal torque values were the implant surface area and diameter. As the liquid cement prevents the use of insertion torque, considering the relationship between insertion and removal torque, removal torque can be considered a reliable surrogate for primary implant stability for bench and pre-clinical settings. CLINICAL RELEVANCE: At present, the primary stability of dental implants is linked to the quality of the host bone, the drill protocol, and the specific implant design. The adhesive cement might find applications in future clinical settings for enhancing primary stability of implants under circumstances where this cannot be achieved conventionally.


Assuntos
Implantes Dentários , Implantação Dentária Endóssea/métodos , Planejamento de Prótese Dentária , Osso e Ossos , Remoção de Dispositivo , Torque
2.
Macromol Rapid Commun ; 42(10): e2000660, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33834552

RESUMO

Attaching hydrogels to soft internal tissues is crucial for the development of various biomedical devices. Tough sticky hydrogel patches present high adhesion, yet with lack of injectability and the need for treatment of contacting surface. On the contrary, injectable and photo-curable hydrogels are highly attractive owing to their ease of use, flexibility of filling any shape, and their minimally invasive character, compared to their conventional preformed counterparts. Despite recent advances in material developments, a hydrogel that exhibits both proper injectability and sufficient intrinsic adhesion is yet to be demonstrated. Herein, a paradigm shift is proposed toward the design of intrinsically adhesive networks for injectable and photo-curable hydrogels. The bioinspired design strategy not only provides strong adhesive contact, but also results in a wide window of physicochemical properties. The adhesive networks are based on a family of polymeric backbones where chains are modified to be intrinsically adhesive to host tissue and simultaneously form a hydrogel network via a hybrid cross-linking mechanism. With this strategy, adhesion is achieved through a controlled synergy between the interfacial chemistry and bulk mechanical properties. The functionalities of the bioadhesives are demonstrated for various applications, such as tissue adhesives, surgical sealants, or injectable scaffolds.


Assuntos
Hidrogéis , Adesivos Teciduais , Adesivos , Polímeros , Medicina Regenerativa
3.
J Mater Sci Mater Med ; 31(2): 24, 2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32036502

RESUMO

A new class of materials, bone adhesives, could revolutionise the treatment of highly fragmented fractures. We present the first biological safety investigation of a bio-inspired bone adhesive. The formulation was based upon a modified calcium phosphate cement that included the amino acid phosphoserine. This material has recently been described as substantially stronger than other bioresorbable calcium phosphate cements. Four adhesive groups with the active substance (phosphoserine) and two control groups without phosphoserine were selected for in vitro and in vivo biocompatibility testing. The test groups were subject for cell viability assay and subcutaneous implantation in rats that was followed by gene expression analysis and histology assessment after 6 and 12 weeks. All adhesive groups supported the same rate of cell proliferation compared to the α-TCP control and had viability between 45-64% when compared to cell control. There was no evidence of an increased immune response or ectopic bone formation in vivo. To conclude, this bio-inspired bone adhesive has been proven to be safe, in the present study, without any harmful effects on the surrounding soft tissue.


Assuntos
Materiais Biocompatíveis/química , Cimentos Ósseos , Teste de Materiais , Células 3T3 , Animais , Sobrevivência Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
4.
J Mater Sci Mater Med ; 29(8): 129, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30066293

RESUMO

The 4th Translational Research Symposium (TRS) was organised at the annual meeting of the European Society for Biomaterials (ESB) 2017, Athens, Greece, with a focus on 'Academia-Industry Clusters of Research for Innovation Catalysis'. Collaborations between research institutes and industry can be sustained in several ways such as: European Union (EU) funded consortiums; syndicates of academic institutes, clinicians and industries; funding from national governments; and private collaborations between universities and companies. Invited speakers from industry and research institutions presented examples of these collaborations in the translation of research ideas or concepts into marketable products. The aim of the present article is to summarize the key messages conveyed during these lectures. In particular, emphasis is put on the challenges to appropriately identify and select unmet clinical needs and their translation by ultimately implementing innovative and efficient solutions achieved through joint academic and industrial efforts.


Assuntos
Materiais Biocompatíveis , Pesquisa Translacional Biomédica , Indústria Farmacêutica , Setor de Assistência à Saúde , Humanos , Apoio à Pesquisa como Assunto
5.
BMC Musculoskelet Disord ; 15: 97, 2014 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-24656151

RESUMO

BACKGROUND: In fracture treatment, adequate fixation of implants is crucial to long-term clinical performance. Bisphosphonates (BP), potent inhibitors of osteoclastic bone resorption, are known to increase peri-implant bone mass and accelerate primary fixation. However, adverse effects are associated with systemic use of BPs. Thus, Zoledronic acid (ZOL) a potent BP was loaded on bone screws and evaluated in a local delivery model. Whilst mid- to long-term effects are already reported, early cellular events occurring at the implant/bone interface are not well described. The present study investigated early tissue responses to ZOL locally delivered, by bone screw, into a compromised cancellous bone site. METHODS: ZOL was immobilized on fibrinogen coated titanium screws. Using a bilateral approach, ZOL loaded test and non-loaded control screws were implanted into femoral condyle bone defects, created by an overdrilling technique. Histological analyses of the local tissue effects such as new bone formation and osteointegration were performed at days 1, 5 and 10. RESULTS: Histological evaluation of the five day ZOL group, demonstrated a higher osseous differentiation trend. At ten days an early influx of mesenchymal and osteoprogenitor cells was seen and a higher level of cellular proliferation and differentiation (p < 5%). In the ZOL group bone-to-screw contact and bone volume values within the defect tended to increase. Local drug release did not induce any adverse cellular effects. CONCLUSION: This study indicates that local ZOL delivery into a compromised cancellous bone site actively supports peri-implant osteogenesis, positively affecting mesenchymal cells, at earlier time points than previously reported in the literature.


Assuntos
Reabsorção Óssea/prevenção & controle , Parafusos Ósseos , Materiais Revestidos Biocompatíveis , Difosfonatos/farmacologia , Fêmur/efeitos dos fármacos , Imidazóis/farmacologia , Animais , Difosfonatos/administração & dosagem , Difosfonatos/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Exsudatos e Transudatos , Fêmur/patologia , Fibrina/análise , Fibrinogênio , Fibrose , Imidazóis/administração & dosagem , Imidazóis/farmacocinética , Implantes Experimentais , Macrófagos/patologia , Masculino , Mesoderma/patologia , Osseointegração , Osteoclastos/efeitos dos fármacos , Projetos Piloto , Coelhos , Titânio , Ácido Zoledrônico
6.
J Mech Behav Biomed Mater ; 150: 106241, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995601

RESUMO

Screw-bone construct failures are a true challenge in orthopaedic implant fixation, particularly in poor quality bone. Whilst augmentation with bone cement can improve the primary stability of screws, there are cements, e.g. PMMA, that may impede blood flow and nutrients and hamper bone remodelling. In this study, soft, non-setting biomaterials based on Hyalectin gels and hydroxyapatite (HA) particles with different morphological parameters were evaluated as potential augmentation materials, using a lapine ex vivo bone model. The pull-out force, stiffness, and work to fracture were considered in evaluating screw attachment. The pull-out force of constructs reinforced with Hyalectin containing irregularly shaped nano-HA and spherically shaped micro-HA particles were found to be significantly higher than the control group (no augmentation material). The pull-out stiffness increased for the micro-HA particles and the work to fracture increased for the irregular nano-HA particles. However, there were no significant augmentation effect found for the spherical shaped nano-HA particles. In conclusion, injectable Hyalectin gel loaded with hydroxyapatite particles was found to have a potentially positive effect on the primary stability of screws in trabecular bone, depending on the HA particle shape and size.


Assuntos
Fraturas Ósseas , Hialectinas , Humanos , Durapatita , Osso Esponjoso , Hidrogéis , Parafusos Ósseos , Cimentos Ósseos , Fenômenos Biomecânicos
7.
J Mater Sci Mater Med ; 24(9): 2265-74, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23779156

RESUMO

This paper evaluates the loading and release properties of Tobramycin incorporated by adsorptive loading from a solution into plasma sprayed and biomimetically coated Hydroxyapatite (HA) fixation pins. The aim of this study is to contribute towards designing a functional implant surface offering local release of the antibiotic agent to prevent post-surgical infections. Cathodic arc deposition is used to coat stainless steel fixation pins with a bioactive, anatase phase dominated, TiO2 coating onto which a HA layer is grown biomimetically. The loading and release properties are evaluated by studying the subsequent release of Tobramycin using high performance liquid chromatography and correlated to the differences in HA coating microstructure and the physical conditions under loading. The results from these studies show that a dual loading strategy consisting of a solution temperature of 90 °C and a pressure of 6 bar during a loading time of 5 min release a sufficient amount of Tobramycin to guarantee the inhibition of Staphylococcus aureus up to 2 days for plasma sprayed HA coatings and for 8 days for biomimetic coatings. The present study emphasizes the advantages of the nanoporous structure of biomimetically deposited HA over the more dense structure of plasma sprayed HA coatings in terms of antibiotic incorporation and subsequent sustained release and provides a valuable outline for the design of implant surfaces aiming for a fast-loading and controlled, local drug administration.


Assuntos
Antibacterianos/farmacocinética , Durapatita/química , Tobramicina/farmacocinética , Cromatografia Líquida de Alta Pressão , Microscopia Eletrônica de Varredura , Espectrofotometria Ultravioleta
8.
Injury ; 53(6): 1858-1866, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35469636

RESUMO

INTRODUCTION: The fixation of small intraarticular bone fragments is clinically challenging and an obvious first orthopaedic indication for an effective bone adhesive. In the present study the feasibility of bonding freshly harvested human trabecular bone with OsSticR, a novel phosphoserine modified cement, was evaluated using a bone cylinder model pull-out test and compared with a commercial fibrin tissue adhesive. METHODS: Femoral heads (n=13) were collected from hip fracture patients undergoing arthroplasty and stored refrigerated overnight in saline medium prior to testing. Cylindrical bone cores with a pre-inserted bone screw, were prepared using a coring tool. Each core was removed and glued back in place with either the bone adhesive (α-tricalcium phosphate, phosphoserine and 20% trisodium citrate solution) or the fibrin glue. All glued bones were stored in bone medium at 37°C. Tensile loading, using a universal testing machine (5 kN load cell), was applied to each core/head. For the bone adhesive, bone cores were tested at 2 (n=13) and 24 (n=11) hours. For the fibrin tissue adhesive control group (n=9), bone cores were tested exclusively at 2 hours. The femoral bone quality was evaluated with micro-CT. RESULTS: The ultimate pull-out load for the bone adhesive at 2 hours ranged from 36 to 171 N (mean 94 N, SD 42 N). At 24 hours the pull-out strength was similar, 47 to 198 N (mean 123 N, SD 43 N). The adhesive failure usually occurred through the adhesive layer, however in two samples, at 167 N and 198 N the screw pulled out of the bone core. The fibrin tissue adhesive group reached a peak force of 8 N maximally at 2 hours (range 2.8-8 N, mean 5.4 N, SD 1.6 N). The mean BV/TV for femoral heads was 0.15 and indicates poor bone quality. CONCLUSION: The bone adhesive successfully glued wet and fatty tissue of osteoporotic human bone cores. The mean ultimate pull-out force of 123 N at 24 hours corresponds to ∼ 300 kPa shear stress acting on the bone core. These first ex-vivo results in human bone are a promising step toward potential clinical application in osteochondral fragment fixation.


Assuntos
Adesivos , Cabeça do Fêmur , Fenômenos Biomecânicos , Cimentos Ósseos/farmacologia , Parafusos Ósseos , Adesivo Tecidual de Fibrina/farmacologia , Humanos , Fosfosserina
9.
Front Bioeng Biotechnol ; 9: 728042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820360

RESUMO

Osteoporotic fractures are a growing issue due to the increasing incidence of osteoporosis worldwide. High reoperation rates in osteoporotic fractures call for investigation into new methods in improving fixation of osteoporotic bones. In the present study, the strength of a recently developed bone bioadhesive, OsStictm, was evaluated in vivo using a novel bone core assay in a murine animal model at 0, 3, 7, 14, 28, and 42 days. Histology and micro-CT were obtained at all time points, and the mean peak pull-out force was assessed on days 0-28. The adhesive provided immediate fixation to the bone core. The mean peak bone core pull-out force gradually decreased from 6.09 N (σ 1.77 N) at day 0 to a minimum of 3.09 N (σ 1.08 N) at day 7, recovering to 6.37 N (σ 4.18 N) by day 28. The corresponding fibrin (Tisseel) control mean peak bone core pull-out characteristic was 0.27 N (σ 0.27 N) at day 0, with an abrupt increase from 0.37 N (σ 0.28) at day 3, 6.39 N (σ 5.09 N) at day 7, and continuing to increase to 11.34 N (σ 6.5 N) by day 28. The bone cores failed either through core pull-out or by the cancellous part of the core fracturing. Overall, the adhesive does not interrupt healing with pathological changes or rapid resorption. Initially, the adhesive bonded the bone core to the femur, and over time, the adhesive was replaced by a vascularised bone of equivalent quality and quantity to the original bone. At the 42 day time point, 70% of the adhesive in the cancellous compartment and 50% in the cortical compartment had been replaced. The adhesive outwith the bone shell was metabolized by cells that are only removing the material excess with no ectopic bone formation. It is concluded that the adhesive is not a physical and biochemical barrier as the bone heals through the adhesive and is replaced by a normal bone tissue. This adhesive composition meets many of the clinical unmet needs expressed in the literature, and may, after further preclinical assessments, have potential in the repair of bone and osteochondral fragments.

10.
J Mech Behav Biomed Mater ; 110: 103897, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32957202

RESUMO

Augmentation materials, such as ceramic and polymeric bone cements, have been frequently used to improve the physical engagement of screws inserted into bone. While ceramic, degradable cements may ultimately improve fixation stability, reports regarding their effect on early fixation stability have been inconsistent. On the other hand, a newly developed degradable ceramic adhesive that can bond with tissues surrounding the screw, may improve the pullout performance, ensure early stability, and subsequent bony integration. The aim of this study was to investigate failure mechanisms of screw/trabecular bone constructs by comparing non-augmented screws with screws augmented with a calcium phosphate cement or an adhesive, i.e. a phosphoserine-modified calcium phosphate. Pullout tests were performed on screws inserted into trabecular cylinders extracted from human femoral bone. Continuous and stepwise pullout loading was applied with and without real-time imaging in a synchrotron radiation micro-computed tomograph, respectively. Statistical analysis that took the bone morphology into account confirmed that augmentation with the adhesive supported significantly higher pullout loads compared to cement-augmented, or non-augmented screws. However, the adhesive also allowed for a higher injection volume compared to the cement. In-situ imaging showed cracks in the vicinity of the screw threads in all groups, and detachment of the augmentation materials from the trabecular bone in the augmented specimens. Additional cracks at the periphery of the augmentation and the bone-material interfaces were only observed in the adhesive-augmented specimen, indicating a contribution of surface bonding to the pullout resistance. An adhesive that has potential for bonding with tissues, displayed superior pullout resistance, compared to a brushite cement, and may be a promising material for cementation or augmentation of implants.


Assuntos
Adesivos , Cimentos Ósseos , Fenômenos Biomecânicos , Parafusos Ósseos , Osso Esponjoso , Humanos , Teste de Materiais
11.
ACS Cent Sci ; 6(2): 226-231, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32123740

RESUMO

In this paper we report the synthesis of a library of phospho-amino acid analogues, via a novel single-step allyl-phosphoester protection/Pd-mediated deprotection strategy. These phosphoserine and phosphotyrosine analogues were then applied as additives to create adhesive calcium phosphate cements, allowing us to probe the chemical origins of the increased surface binding strength. We demonstrate the importance of multiple calcium binding motifs in mediating adhesion, as well as highlighting the crucial role played by substrate hydrophobicity and orientation in controlling binding strength.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32984269

RESUMO

Bone reconstruction techniques are mainly based on the use of tissue grafts and artificial scaffolds. The former presents well-known limitations, such as restricted graft availability and donor site morbidity, while the latter commonly results in poor graft integration and fixation in the bone, which leads to the unbalanced distribution of loads, impaired bone formation, increased pain perception, and risk of fracture, ultimately leading to recurrent surgeries. In the past decade, research efforts have been focused on the development of innovative bone substitutes that not only provide immediate mechanical support, but also ensure appropriate graft anchoring by, for example, promoting de novo bone tissue formation. From the countless studies that aimed in this direction, only few have made the big jump from the benchtop to the bedside, whilst most have perished along the challenging path of clinical translation. Herein, we describe some clinically successful cases of bone device development, including biological glues, stem cell-seeded scaffolds, and gene-functionalized bone substitutes. We also discuss the ventures that these technologies went through, the hindrances they faced and the common grounds among them, which might have been key for their success. The ultimate objective of this perspective article is to highlight the important aspects of the clinical translation of an innovative idea in the field of bone grafting, with the aim of commercially and clinically informing new research approaches in the sector.

13.
Materials (Basel) ; 12(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382566

RESUMO

The aim of the present study was to evaluate the soft tissue bond strength of a newly developed, monomeric, biomimetic, tissue adhesive called phosphoserine modified cement (PMC). Two types of PMCs were evaluated using lap shear strength (LSS) testing, on porcine skin: a calcium metasilicate (CS1), and alpha tricalcium phosphate (αTCP) PMC. CS1 PCM bonded strongly to skin, reaching a peak LSS of 84, 132, and 154 KPa after curing for 0.5, 1.5, and 4 h, respectively. Cyanoacrylate and fibrin glues reached an LSS of 207 kPa and 33 kPa, respectively. αTCP PMCs reached a final LSS of ≈110 kPa. In soft tissues, stronger bond strengths were obtained with αTCP PMCs containing large amounts of amino acid (70-90 mol%), in contrast to prior studies in calcified tissues (30-50 mol%). When αTCP particle size was reduced by wet milling, and for CS1 PMCs, the strongest bonding was obtained with mole ratios of 30-50% phosphoserine. While PM-CPCs behave like stiff ceramics after setting, they bond to soft tissues, and warrant further investigation as tissue adhesives, particularly at the interface between hard and soft tissues.

14.
BMC Biomed Eng ; 1: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32903290

RESUMO

BACKGROUND: Currently there are no standard models with which to evaluate the biomechanical performance of calcified tissue adhesives, in vivo. We present, herein, a pre-clinical murine distal femoral bone model for evaluating tissue adhesives intended for use in both osseous and osteochondral tissue reconstruction. RESULTS: Cylindrical cores (diameter (Ø) 2 mm (mm) × 2 mm depth), containing both cancellous and cortical bone, were fractured out from the distal femur and then reattached using one of two tissue adhesives. The adhesiveness of fibrin glue (Tisseeltm), and a novel, biocompatible, calcium phosphate-based tissue adhesive (OsStictm) were evaluated by pullout testing, in which glued cores were extracted and the peak force at failure recorded. The results show that Tisseel weakly bonded the metaphyseal bone cores, while OsStic produced > 30-fold higher mean peak forces at failure (7.64 Newtons (N) vs. 0.21 N). The failure modes were consistently disparate, with Tisseel failing gradually, while OsStic failed abruptly, as would be expected with a calcium-based material. Imaging of the bone/adhesive interface with microcomputed tomography revealed that, for OsStic, failure occurred more often within cancellous bone (75% of tested samples) rather than at the adhesive interface. CONCLUSIONS: Despite the challenges associated with biomechanical testing in small rodent models the preclinical ex-vivo test model presented herein is both sensitive and accurate. It enabled differences in tissue adhesive strength to be quantified even for very small osseous fragments (<Ø4mm). Importantly, this model can easily be scaled to larger animals and adapted to fracture fragment fixation in human bone. The present model is also compatible with other long-term in vivo evaluation methods (i.e. in vivo imaging, histological analysis, etc.).

15.
Clin Biomech (Bristol, Avon) ; 59: 174-180, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30268995

RESUMO

BACKGROUND: Fracture fixation in weak bone is still a clinical challenge. Screw augmentation was shown to successfully increase their primary stability. The currently used calcium phosphate or polymeric bone cements, however, present important drawbacks such as induced toxicity and/or impaired bone neo-formation. A new approach to enhance bone screw primary stability without affecting bone formation is the use of non-setting, calcium phosphate loaded soft materials as the augmentation material. METHODS: Two types of biomaterials (non-crosslinked hyaluronic acid as viscous fluid and agar as hydrogel) were loaded with 40 wt/vol% of hydroxyapatite particles and characterized. The screw augmentation effect of all materials was evaluated through pull-out tests in bovine cancellous bone and compared to the non-augmented situation (control). The bone mineral density of each test sample was measured with µCT scans and was used to normalize the pull-out strength. FINDINGS: Both materials loaded with hydroxyapatite increased the normalized pull-out strength of the screws compared to control samples and particle-free materials. This counter-intuitive augmentation effect increased with decreasing bone mineral density and was independent from the type of the soft materials used. INTERPRETATION: We were able to demonstrate that non-setting, injectable biomaterials loaded with ceramic particles can significantly enhance the primary stability of bone screws. This material combination opens the unique possibility to achieve a screw augmentation effect without impairing or even potentially favoring the bone formation in proximity to the screw. This effect would be particularly advantageous for the treatment of osteoporotic bone fractures requiring a stabilization with bone screws.


Assuntos
Materiais Biocompatíveis , Parafusos Ósseos , Osso Esponjoso/cirurgia , Durapatita , Fixação Interna de Fraturas/instrumentação , Fraturas por Osteoporose/cirurgia , Animais , Fenômenos Biomecânicos , Cimentos Ósseos/uso terapêutico , Densidade Óssea , Fosfatos de Cálcio , Bovinos , Fixação Interna de Fraturas/métodos , Humanos , Resistência à Tração
16.
J Mech Behav Biomed Mater ; 77: 624-633, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29100205

RESUMO

Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R2 = 0.79) was weaker than correlation with total cement porosity (R2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may still produce a significant improvement in screw pull-out force. When the correlation strength of all the tested models were compared both cement porosity and compressive strength accurately predicted pull-out force (R2=1.00, R2=0.808), though prediction accuracy depended upon the strength of the material surrounding the Sawbone. The correlations strength was low for bone with no, or weak, cortical fixation (R2=0.56, 0.36). Higher strength and lower porosity CPCs also produced greater pull-out force (1-1.5kN) than commercial CPC (0.2-0.5kN), but lower pull-out force than PMMA (2-3kN). The results of this study suggest that the likelihood of screw fixation failure may be reduced by selecting calcium phosphate cements with lower porosity and higher compressive strength, in patients with healthy bone mineral density and/or sufficient cortical thickness. This is of particular clinical relevance when fixation with metal plates is indicated, or where the augmentation volume is limited.


Assuntos
Materiais Biocompatíveis/química , Cimentos Ósseos/química , Parafusos Ósseos , Animais , Fenômenos Biomecânicos , Placas Ósseas , Fosfatos de Cálcio/química , Bovinos , Força Compressiva , Desenho de Equipamento , Fixação Interna de Fraturas , Humanos , Teste de Materiais , Fosfatos/química , Porosidade , Pós , Estresse Mecânico
17.
Materials (Basel) ; 11(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544596

RESUMO

Calcium phosphate cements (CPCs) are clinically effective void fillers that are capable of bridging calcified tissue defects and facilitating regeneration. However, CPCs are completely synthetic/inorganic, unlike the calcium phosphate that is found in calcified tissues, and they lack an architectural organization, controlled assembly mechanisms, and have moderate biomechanical strength, which limits their clinical effectiveness. Herein, we describe a new class of bioinspired CPCs that can glue tissues together and bond tissues to metallic and polymeric biomaterials. Surprisingly, alpha tricalcium phosphate cements that are modified with simple phosphorylated amino acid monomers of phosphoserine (PM-CPCs) bond tissues up to 40-fold stronger (2.5⁻4 MPa) than commercial cyanoacrylates (0.1 MPa), and 100-fold stronger than surgical fibrin glue (0.04 MPa), when cured in wet-field conditions. In addition to adhesion, phosphoserine creates other novel properties in bioceramics, including a nanoscale organic/inorganic composite microstructure, and templating of nanoscale amorphous calcium phosphate nucleation. PM-CPCs are made of the biocompatible precursors calcium, phosphate, and amino acid, and these represent the first amorphous nano-ceramic composites that are stable in liquids.

18.
Biomech Model Mechanobiol ; 16(4): 1349-1359, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28265781

RESUMO

The mechanical fixation of endosseous implants, such as screws, in trabecular bone is challenging because of the complex porous microstructure. Development of new screw designs to improve fracture fixation, especially in high-porosity osteoporotic bone, requires a profound understanding of how the structural system implant/trabeculae interacts when it is subjected to mechanical load. In this study, pull-out tests of screw implants were performed. Screws were first inserted into the trabecular bone of rabbit femurs and then pulled out from the bone inside a computational tomography scanner. The tests were interrupted at certain load steps to acquire 3D images. The images were then analysed with a digital volume correlation technique to estimate deformation and strain fields inside the bone during the tests. The results indicate that the highest shear strains are concentrated between the inner and outer thread diameter, whereas compressive strains are found at larger distances from the screw. Tensile strains were somewhat smaller. Strain concentrations and the location of trabecular failures provide experimental information that could be used in the development of new screw designs and/or to validate numerical simulations.


Assuntos
Parafusos Ósseos , Osso Esponjoso , Animais , Fenômenos Biomecânicos , Parafusos Ósseos/normas , Osso Esponjoso/cirurgia , Fixação de Fratura/instrumentação , Imageamento Tridimensional , Modelos Animais , Coelhos , Microtomografia por Raio-X
19.
J Tissue Eng Regen Med ; 11(7): 1974-1985, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26549303

RESUMO

Locally applied bisphosphonates, such as zoledronate, have been shown in several studies to inhibit peri-implant bone resorption and recently to enhance peri-implant bone formation. Studies have also demonstrated positive effects of hydroxyapatite (HA) particles on peri-implant bone regeneration and an enhancement of the anti-resorptive effect of bisphosphonates in the presence of calcium. In the present study, both hydroxyapatite nanoparticles (nHA) and zoledronate were combined to achieve a strong reinforcing effect on peri-implant bone. The nHA-zoledronate combination was first investigated in vitro with a pre-osteoclastic cell assay (RAW 264.7) and then in vivo in a rat model of postmenopausal osteoporosis. The in vitro study confirmed that the inhibitory effect of zoledronate on murine osteoclast precursor cells was enhanced by loading the drug on nHA. For the in vivo investigation, either zoledronate-loaded or pure nHA were integrated in hyaluronic acid hydrogel. The gels were injected in screw holes that had been predrilled in rat femoral condyles before the insertion of miniature screws. Micro-CT-based dynamic histomorphometry and histology revealed an unexpected rapid mineralization of the hydrogel in vivo through formation of granules, which served as scaffold for new bone formation. The delivery of zoledronate-loaded nHA further inhibited a degradation of the mineralized hydrogel as well as a resorption of the peri-implant bone as effectively as unbound zoledronate. Hyaluronic acid with zoledronate-loaded nHA, thanks to its dual effect on inducing a rapid mineralization and preventing resorption, is a promising versatile material for bone repair and augmentation. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Substitutos Ósseos , Difosfonatos , Durapatita , Fêmur/lesões , Fêmur/metabolismo , Imidazóis , Osteoporose Pós-Menopausa/tratamento farmacológico , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Difosfonatos/química , Difosfonatos/farmacologia , Modelos Animais de Doenças , Durapatita/química , Durapatita/farmacologia , Feminino , Fêmur/patologia , Humanos , Imidazóis/química , Imidazóis/farmacologia , Camundongos , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Células RAW 264.7 , Ratos , Ratos Wistar , Ácido Zoledrônico
20.
Biomaterials ; 35(37): 9995-10006, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25241159

RESUMO

Bisphosphonates are known for their strong inhibitory effect on bone resorption. Their influence on bone formation however is less clear. In this study we investigated the spatio-temporal effect of locally delivered Zoledronate on peri-implant bone formation and resorption in an ovariectomized rat femoral model. A cross-linked hyaluronic acid hydrogel was loaded with the drug and applied bilaterally in predrilled holes before inserting polymer screws. Static and dynamic bone parameters were analyzed based on in vivo microCT scans performed first weekly and then biweekly. The results showed that the locally released Zoledronate boosted bone formation rate up to 100% during the first 17 days after implantation and reduced the bone resorption rate up to 1000% later on. This shift in bone remodeling resulted in an increase in bone volume fraction (BV/TV) by 300% close to the screw and 100% further away. The double effect on bone formation and resorption indicates a great potential of Zoledronate-loaded hydrogel for enhancement of peri-implant bone volume which is directly linked to improved implant fixation.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/uso terapêutico , Reabsorção Óssea/tratamento farmacológico , Difosfonatos/administração & dosagem , Difosfonatos/uso terapêutico , Imidazóis/administração & dosagem , Imidazóis/uso terapêutico , Osteogênese/efeitos dos fármacos , Animais , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/fisiopatologia , Parafusos Ósseos , Sistemas de Liberação de Medicamentos , Feminino , Fêmur/efeitos dos fármacos , Fêmur/fisiologia , Fêmur/fisiopatologia , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ratos , Ácido Zoledrônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA