RESUMO
BACKGROUND: Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS: We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS: Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.
Assuntos
Eucariotos , Kinetoplastida , Humanos , Eucariotos/genética , Prófase Meiótica I , Euglenozoários/genética , Kinetoplastida/genética , Família Multigênica , FilogeniaRESUMO
Diplonemids are highly abundant heterotrophic marine protists. Previous studies showed that their strikingly bloated mitochondrial genome is unique because of systematic gene fragmentation and manifold RNA editing. Here we report a comparative study of mitochondrial genome architecture, gene structure and RNA editing of six recently isolated, phylogenetically diverse diplonemid species. Mitochondrial gene fragmentation and modes of RNA editing, which include cytidine-to-uridine (C-to-U) and adenosine-to-inosine (A-to-I) substitutions and 3' uridine additions (U-appendage), are conserved across diplonemids. Yet as we show here, all these features have been pushed to their extremes in the Hemistasiidae lineage. For example, Namystynia karyoxenos has its genes fragmented into more than twice as many modules than other diplonemids, with modules as short as four nucleotides. Furthermore, we detected in this group multiple A-appendage and guanosine-to-adenosine (G-to-A) substitution editing events not observed before in diplonemids and found very rarely elsewhere. With >1,000 sites, C-to-U and A-to-I editing in Namystynia is nearly 10 times more frequent than in other diplonemids. The editing density of 12% in coding regions makes Namystynia's the most extensively edited transcriptome described so far. Diplonemid mitochondrial genome architecture, gene structure and post-transcriptional processes display such high complexity that they challenge all other currently known systems.
Assuntos
Euglenozoários/genética , Genes , Genoma Mitocondrial , Edição de RNA/genética , Sequência de Bases , Cromossomos/genética , Sequência Conservada , DNA Mitocondrial/genética , FilogeniaRESUMO
BACKGROUND: The phylum Euglenozoa is a group of flagellated protists comprising the diplonemids, euglenids, symbiontids, and kinetoplastids. The diplonemids are highly abundant and speciose, and recent tools have rendered the best studied representative, Diplonema papillatum, genetically tractable. However, despite the high diversity of diplonemids, their lifestyles, ecological functions, and even primary energy source are mostly unknown. RESULTS: We designed a metabolic map of D. papillatum cellular bioenergetic pathways based on the alterations of transcriptomic, proteomic, and metabolomic profiles obtained from cells grown under different conditions. Comparative analysis in the nutrient-rich and nutrient-poor media, as well as the absence and presence of oxygen, revealed its capacity for extensive metabolic reprogramming that occurs predominantly on the proteomic rather than the transcriptomic level. D. papillatum is equipped with fundamental metabolic routes such as glycolysis, gluconeogenesis, TCA cycle, pentose phosphate pathway, respiratory complexes, ß-oxidation, and synthesis of fatty acids. Gluconeogenesis is uniquely dominant over glycolysis under all surveyed conditions, while the TCA cycle represents an eclectic combination of standard and unusual enzymes. CONCLUSIONS: The identification of conventional anaerobic enzymes reflects the ability of this protist to survive in low-oxygen environments. Furthermore, its metabolism quickly reacts to restricted carbon availability, suggesting a high metabolic flexibility of diplonemids, which is further reflected in cell morphology and motility, correlating well with their extreme ecological valence.
Assuntos
Prófase Meiótica I , Proteômica , Euglenozoários/genética , Eucariotos , Oxigênio , FilogeniaRESUMO
Alternative reproductive tactics (ARTs) are prevalent in nature, where smaller parasitic males typically have better sperm quality than larger territorial guard males. At present, it is unclear what is causing this phenomenon. Our objective was to gain insights into sperm form and function by examining flagellar beating patterns (beat frequency, wave amplitude, bend length, bend angle, wave velocity) and biomechanical sperm metrics (velocity, hydrodynamic power output, propulsive efficiency) of wild spawning Chinook salmon ARTs. Ovarian fluid and milt were collected to form a series of eight experimental blocks, each composed of ovarian fluid from a unique female and sperm from a unique pair of parasitic jack and guard hooknose males. Sperm from each ART were activated in river water and ovarian fluid. Flagellar parameters were evaluated from recordings using high-speed video microscopy and biomechanical metrics were quantified. We show that ART has an impact on flagellar beating, where jacks had a higher bend length and bend angle than hooknoses. Activation media also impacted the pattern of flagellar parameters, such that beat frequency, wave velocity and bend angle declined, while wave amplitude of flagella increased when ovarian fluid was incorporated into activation media. Furthermore, we found that sperm from jacks swam faster than those from hooknoses and required less hydrodynamic power output to propel themselves in river water and ovarian fluid. Jack sperm were also more efficient at swimming than hooknose sperm, and propulsive efficiency increased when cells were activated in ovarian fluid. The results demonstrate that sperm biomechanics may be driving divergence in competitive reproductive success between ARTs.
Assuntos
Ovário/fisiologia , Salmão/fisiologia , Motilidade dos Espermatozoides , Cauda do Espermatozoide/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Masculino , Ontário , Reprodução/fisiologiaRESUMO
Nearly all aerobic organisms are equipped with catalases, powerful enzymes scavenging hydrogen peroxide and facilitating defense against harmful reactive oxygen species. In trypanosomatids, this enzyme was not present in the common ancestor, yet it had been independently acquired by different lineages of monoxenous trypanosomatids from different bacteria at least three times. This observation posited an obvious question: why was catalase so "sought after" if many trypanosomatid groups do just fine without it? In this work, we analyzed subcellular localization and function of catalase in Leptomonas seymouri. We demonstrated that this enzyme is present in the cytoplasm and a subset of glycosomes, and that its cytoplasmic retention is H2O2-dependent. The ablation of catalase in this parasite is not detrimental in vivo, while its overexpression resulted in a substantially higher parasite load in the experimental infection of Dysdercus peruvianus. We propose that the capacity of studied flagellates to modulate the catalase activity in the midgut of its insect host facilitates their development and protects them from oxidative damage at elevated temperatures.
Assuntos
Catalase , Peróxido de Hidrogênio , Trypanosomatina , Catalase/metabolismo , Animais , Trypanosomatina/enzimologia , Trypanosomatina/genética , Peróxido de Hidrogênio/metabolismo , Citoplasma , Microcorpos/metabolismoRESUMO
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
Assuntos
Eucariotos , Evolução Molecular , Eucariotos/genética , Filogenia , GenômicaRESUMO
Diplonemids are one of the most abundant groups of heterotrophic planktonic microeukaryotes in the world ocean and, thus, are likely to play an essential role in marine ecosystems. So far, only few species have been introduced into a culture, allowing basic studies of diplonemid genetics, morphology, ultrastructure, metabolism, as well as endosymbionts. However, it remains unclear whether these heterotrophic flagellates are parasitic or free-living and what are their predominant dietary patterns and preferred food items. Here we show that cultured diplonemids, maintained in an organic-rich medium as osmotrophs, can gradually switch to bacterivory as a sole food resource, supporting positive growth of their population, even when fed with a low biovolume of bacteria. We further observed remarkable differences in species-specific feeding patterns, size-selective grazing preferences, and distinct feeding strategies. Diplonemids can discriminate between low-quality food items and inedible particles, such as latex beads, even after their ingestion, by discharging them in the form of large waste vacuoles. We also detected digestion-related endogenous autofluorescence emitted by lysosomes and the activity of a melanin-like material. We present the first evidence that these omnipresent protists possess an opportunistic lifestyle that provides a considerable advantage in the generally food resource-limited marine environments.
Assuntos
Ecossistema , Eucariotos , Bactérias/genética , Comportamento Alimentar , PlânctonRESUMO
Diplonemids are a group of flagellate protists, that belong to the phylum Euglenozoa alongside euglenids, symbiontids and kinetoplastids. They primarily inhabit marine environments, though are also found in freshwater lakes. Diplonemids have been considered as rare and unimportant eukaryotes for over a century, with only a handful of species described until recently. However, thanks to their unprecedented diversity and abundance in the world oceans, diplonemids now attract increased attention. Recent improvements in isolation and cultivation have enabled characterization of several new genera, warranting a re-examination of all available knowledge gathered so far. Here we summarize available data on diplonemids, focusing on the recent advances in the fields of diversity, ecology, genomics, metabolism, and endosymbionts. We illustrate the life stages of cultivated genera, and summarise all reported interspecies associations, which in turn suggest lifestyles of predation and parasitism. This review also includes the latest classification of diplonemids, with a taxonomic revision of the genus Diplonema. Ongoing efforts to sequence various diplonemids suggest the presence of large and complex genomes, which correlate with the metabolic versatility observed in the model species Paradiplonema papillatum. Finally, we highlight its successful transformation into one of few genetically tractable marine protists.
Assuntos
Euglenozoários , Parasitos , Animais , Euglenozoários/genética , Eucariotos/genética , Oceanos e Mares , FilogeniaRESUMO
Diplonemids belong to the most diverse and abundant marine protists, which places them among the key players of the oceanic ecosystem. Under in vitro conditions, their best-known representative Diplonema papillatum accumulates in its cytoplasm a crystalline polymer. When grown under the nutrient-poor conditions, but not nutrient-rich conditions, D. papillatum synthesizes a ß-1,3-glucan polymer, also known as paramylon. This phenomenon is unexpected, as it is in striking contrast to the accumulation of paramylon in euglenids, since these related flagellates synthesize this polymer solely under nutrient-rich conditions. The capacity of D. papillatum to store an energy source in the form of polysaccharides when the environment is poor in nutrients is unexpected and may contribute to the wide distribution of these protists in the ocean.
Assuntos
Ecossistema , Prófase Meiótica I , Euglenozoários , Glucanos/química , EucariotosRESUMO
Genome evolution in bacterial endosymbionts is notoriously extreme: the combined effects of strong genetic drift and unique selective pressures result in highly reduced genomes with distinctive adaptations to hosts [1-4]. These processes are mostly known from animal endosymbionts, where nutritional endosymbioses represent the best-studied systems. However, eukaryotic microbes, or protists, also harbor diverse bacterial endosymbionts, but their genome reduction and functional relationships with their hosts are largely unexplored [5-7]. We sequenced the genomes of four bacterial endosymbionts from three species of diplonemids, poorly studied but abundant and diverse heterotrophic protists [8-12]. The endosymbionts come from two bacterial families, Rickettsiaceae and Holosporaceae, that have invaded two families of diplonemids, and their genomes have converged on an extremely small size (605-632 kilobase pairs [kbp]), similar gene content (e.g., metabolite transporters and secretion systems), and reduced metabolic potential (e.g., loss of energy metabolism). These characteristics are generally found in both families, but the diplonemid endosymbionts have evolved greater extremes in parallel. They possess modified type VI secretion systems that could function in manipulating host metabolism or other intracellular interactions. Finally, modified cellular machinery like the ATP synthase without oxidative phosphorylation, and the reduced flagellar apparatus present in some diplonemid endosymbionts and nutritional animal endosymbionts, indicates that intracellular mechanisms have converged in bacterial endosymbionts with various functions and from different eukaryotic hosts across the tree of life.
Assuntos
Evolução Molecular , Genoma Bacteriano , Holosporaceae/genética , Rickettsiaceae/genética , Euglenozoários/microbiologia , SimbioseRESUMO
Until now, Hemistasia phaeocysticola was the only representative of the monogeneric family Hemistasiidae available in culture. Here we describe two new axenized hemistasiids isolated from Tokyo Bay, Japan. Like in other diplonemids, cellular organization of these heterotrophic protists is characterized by a distinct apical papilla, a tubular cytopharynx contiguous with a deep flagellar pocket, and a highly branched mitochondrion with lamellar cristae. Both hemistasiids also bear a prominent digestive vacuole, peripheral lacunae, and paraflagellar rods, are highly motile and exhibit diverse morphologies in culture. We argue that significant differences in molecular phylogenetics and ultrastructure between these new species and H. phaeocysticola are on the generic level. Therefore, we have established two new genera within Hemistasiidae - Artemidia gen. n. and Namystynia gen. n. to accommodate Artemidia motanka, sp. n. and Namystynia karyoxenos, sp. n., respectively. A. motanka permanently carries tubular extrusomes, while in N. karyoxenos, they are present only in starving cells. An additional remarkable feature of the latter species is the presence, in both the cytoplasm and the nucleus, of the endosymbiotic rickettsiid Candidatus Sneabacter namystus.
Assuntos
Eucariotos , Filogenia , Baías/parasitologia , Eucariotos/classificação , Eucariotos/genética , Eucariotos/fisiologia , Eucariotos/ultraestrutura , Japão , MovimentoRESUMO
Diplonemids represent a hyperdiverse and abundant yet poorly studied group of marine protists. Here we describe two new members of the genus Diplonema (Diplonemea, Euglenozoa), Diplonema japonicum sp. nov. and Diplonema aggregatum sp. nov., based on life cycle, morphology, and 18S rRNA gene sequences. Along with euglenozoan apomorphies, they contain several unique features. Their life cycle is complex, consisting of a trophic stage that is, following the depletion of nutrients, transformed into a sessile stage and subsequently into a swimming stage. The latter two stages are characterized by the presence of tubular extrusomes and the emergence of a paraflagellar rod, the supportive structure of the flagellum, which is prominently lacking in the trophic stage. These two stages also differ dramatically in motility and flagellar size. Both diplonemid species host endosymbiotic bacteria that are closely related to each other and constitute a novel branch within Holosporales, for which a new genus, "Candidatus Cytomitobacter" gen. nov., has been established. Remarkably, the number of endosymbionts in the cytoplasm varies significantly, as does their localization within the cell, where they seem to penetrate the mitochondrion, a rare occurrence.IMPORTANCE We describe the morphology, behavior, and life cycle of two new Diplonema species that established a relationship with two Holospora-like bacteria in the first report of an endosymbiosis in diplonemids. Both endosymbionts reside in the cytoplasm and the mitochondrion, which establishes an extremely rare case. Within their life cycle, the diplonemids undergo transformation from a trophic to a sessile and eventually a highly motile swimming stage. These stages differ in several features, such as the presence or absence of tubular extrusomes and a paraflagellar rod, along with the length of the flagella. These morphological and behavioral interstage differences possibly reflect distinct functions in dispersion and invasion of the host and/or prey and may provide novel insight into the virtually unknown function of diplonemids in the oceanic ecosystem.
Assuntos
Prófase Meiótica I/fisiologia , Simbiose/fisiologia , Bactérias/genética , Estágios do Ciclo de Vida/fisiologia , Filogenia , RNA Ribossômico 18S/genéticaRESUMO
Diplonemids were recently found to be the most species-rich group of marine planktonic protists. Based on phylogenetic analysis of 18S rRNA gene sequences and morphological observations, we report the description of new members of the genus Rhynchopus - R. humris sp. n. and R. serpens sp. n., and the establishment of two new genera - Lacrimia gen. n. and Sulcionema gen. n., represented by L. lanifica sp. n. and S. specki sp. n., respectively. In addition, we describe the organism formerly designated as Diplonema sp. 2 (ATCC 50224) as Flectonema neradi gen. n., sp. n. The newly described diplonemids share a common set of traits. Cells are sac-like but variable in shape and size, highly metabolic, and surrounded by a naked cell membrane, which is supported by a tightly packed corset of microtubules. They carry a single highly reticulated peripheral mitochondrion containing a large amount of mitochondrial DNA, with lamellar cristae. The cytopharyngeal complex and flagellar pocket are contiguous and have separate openings. Two parallel flagella are inserted sub-apically into a pronounced flagellar pocket. Rhynchopus species have their flagella concealed in trophic stages and fully developed in swimming stages, while they permanently protrude in all other known diplonemid species.
Assuntos
Euglenozoários/classificação , Euglenozoários/genética , DNA Mitocondrial/genética , Japão , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNARESUMO
Spermatozoa are stored in a quiescent state in the male reproductive tract and motility is induced in response to various environmental stimuli, such as change of osmolality (general case) and a decrease of extracellular K+ in fish from Acipenseridae family. This study was aimed to investigate the relationship between osmolality and extracellular K+ concentration in controlling sperm motility in sturgeon. Pre-incubation of sturgeon sperm for 5s in hypertonic solutions of glycerol, NaCl, or sucrose (each of 335 mOsm/kg osmolality) prepares sturgeon spermatozoa to become fully motile in presence of high concentration of K+ ions (15 mM), which has previously been demonstrated to fully repress motility. Furthermore, presence of 0.5mM KCl during the high osmolality pre-incubation exposure completely prevented subsequent spermatozoa activation in a K+-rich media. Manipulating the transport of K+ ions by the presence of K+ ionophore (valinomycin), it was concluded that once an efflux of K+ ions, the precursor of sturgeon sperm motility activation, is taking place, spermatozoa then become insensitive to a large extracellular K+ concentration.
Assuntos
Peixes/fisiologia , Concentração Osmolar , Potássio/fisiologia , Motilidade dos Espermatozoides/fisiologia , Animais , Masculino , Cloreto de Potássio/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacosRESUMO
In most teleost fishes, sperm cells are quiescent in the seminal plasma and are activated by either a drop (fresh water fish) or an increase in osmolality (marine fish) when released in the water. It is most interesting to examine how the mechanisms of sperm motility activation can adapt to a broad range of salinities, as applies to some euryhaline species, and particularly to the tilapia Sarotherodon melanotheron heudelotii, which can reproduce at salinities from 0 up to 120 in the wild. Here, the gonado-somatic index, semen characteristics, and the osmotic and ionic requirements of sperm motility activation were compared in S. m. heudelotii reared in fresh water (FW), sea water (SW), or hypersaline water (HW; salinities of 0, 35, and 70, respectively). No salinity-dependent differences were found in gonado-somatic index or semen characteristics, except for an increase of seminal plasma osmolality with increasing salinity (from 318 to 349 mOsm kg(-1) in FW and HW fish, respectively). The osmolality range allowing the highest percentages of sperm activation broadened and shifted toward higher values with increasing fish ambient salinity (150-300, 300-800, and 500-1200 mOsm kg(-1), for FW, SW, and HW fish, respectively). Nevertheless, at the three fish rearing salinities, sperm could be activated in media that were hypotonic, isotonic, or hypertonic relative to the seminal plasma, at least when some calcium was present above a threshold concentration. The [Ca(2+)] required for the activation of S. m. heudelotii sperm is (1) higher in fish reared at a higher salinity (2) higher in hypertonic than that in hypotonic activation media, whatever the fish rearing salinity, and (3) higher in the presence of Na(+) or K(+), the negative effects of which increased with an increase in fish rearing salinity. The [Ca(2+)]/[Na(+)] â ratios allowing for maximal sperm motility in SW or HW fish are close to those observed in natural environments, either in sea or hypersaline waters. In comparison to most teleosts with external fertilization, the total duration of sperm motility in S. m. heudelotii was exceptionally long (>2 hours regardless the fish rearing salinities). The decrease in sperm activity with increasing time since activation did not result from limiting energy reserves, as the addition of calcium in the activation medium caused most spermatozoa to become motile again. The comparison of sperm characteristics of S. m. heudelotii acclimated from FW to SW or HW with those of fish maintained all lifelong at their native salinity showed that adaptive responses were completed within 2 months or less.
Assuntos
Ciclídeos/fisiologia , Salinidade , Sêmen/fisiologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Animais , Sobrevivência Celular , Masculino , Pressão Osmótica , Tolerância ao SalRESUMO
In the present study, for the first time in fish spermatozoa, we describe the precise chronology of motility initiation of sterlet (sturgeon) sperm from completely immotile flagella to regular full wave propagation. The successive activation steps were investigated by high-speed video microscopy, using specific experimental situation, where sperm motility initiation was delayed in time up to several seconds (10 ± 2.68 seconds). Starting from fully immotile, the flagellum shows some trembling for a brief period, soon followed by appearance of the first real bend (so-called "principal bend") with a large wave amplitude 4.28 ± 0.65 µm, then by the "reverse bend," the latter presenting a lower (P < 0.05) wave amplitude (1.14 ± 0.32 µm). This couple of first bends formed at the basal region begins to propagate toward the flagellar tip but gradually fades when reaching the midflagellum, wherein consequently the sperm cell remains nonprogressive. This behavior repeats several times until a stage where the amplitude of the reverse bend gradually reaches a value similar that of the principal bend: The larger amplitude of this couple of bends finally leads to sustain a real "takeoff" of the sperm cell characterized by a full flagellar wave propagation generating an active forward displacement similar to that occurring during regular steady state motility (several seconds after activation). Starting from the earliest stages of motility initiation, the wave propagation along the flagellum and formation of new waves proceeded in a helical manner leading to a 3-dimensional rotation of the whole spermatozoon. Eventually, we estimated that the time period needed from the activation signal (contact with fresh water) to full wave propagation ranges from 0.4 to 1.2 seconds.
Assuntos
Peixes/fisiologia , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Animais , Aquicultura , Flagelos/fisiologia , Masculino , Espermatozoides/citologiaRESUMO
The aim of the study was to examine sperm maturation in sturgeon and to establish the localization of the maturation. We demonstrated that sperm maturation occurs in sturgeon outside the testes via dilution of sperm by urine. The process involves the participation of high molecular weight (>10kDa) substances and calcium ions.
Assuntos
Peixes/fisiologia , Maturação do Esperma/fisiologia , Motilidade dos Espermatozoides/fisiologia , Animais , MasculinoRESUMO
The aim of this study was to describe spermatozoa volume changes during the motility period of fish species with either osmotic (common carp Cyprinus carpio) or with ionic (sterlet Acipenseri ruthenus and brook trout Salvelinus fontinalis) modes of motility activation. Nephelometry, light microscopy, and spermatocrit methods were used for quantitative assessment of cell volume changes in media of different osmolalities. Significant correlation (R(2) = 0.7341; P < 0.001) between parameter of volume changes measured using nephelometry and light microscopy methods confirmed nephelometry as a sufficiently sensitive method to detect changes of spermatozoa volume. The spermatocrit alteration method resulted in a large proportion of damaged and potentially immotile spermatozoa in media of osmolality less than 150 mOsm/kg in carp and osmolalities from 10 to 300 mOsm/kg in sterlet and brook trout. Therefore, this method is not reliable for assessing spermatozoa swelling in hypotonic solutions, because the integrity of the cells is not fully preserved. Increase in carp spermatozoa (osmotic activation mode) volume occurred during the motility period in hypotonic conditions, but no indications of volume changes were found in sterlet and brook trout spermatozoa (ionic activation mode) associated with environmental osmolality alteration. Accordingly, we conclude that sperm volume changes are differentially involved in the motility activation process. Species-specific differences in spermatozoa volume changes as a response to a hypotonic environment during the motility period are discussed in relation to their potent physiological role.