Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Comput Aided Mol Des ; 25(6): 533-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21660515

RESUMO

The Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling. The platform consists of two major subsystems: the database of experimental measurements and the modeling framework. A user-contributed database contains a set of tools for easy input, search and modification of thousands of records. The OCHEM database is based on the wiki principle and focuses primarily on the quality and verifiability of the data. The database is tightly integrated with the modeling framework, which supports all the steps required to create a predictive model: data search, calculation and selection of a vast variety of molecular descriptors, application of machine learning methods, validation, analysis of the model and assessment of the applicability domain. As compared to other similar systems, OCHEM is not intended to re-implement the existing tools or models but rather to invite the original authors to contribute their results, make them publicly available, share them with other users and to become members of the growing research community. Our intention is to make OCHEM a widely used platform to perform the QSPR/QSAR studies online and share it with other users on the Web. The ultimate goal of OCHEM is collecting all possible chemoinformatics tools within one simple, reliable and user-friendly resource. The OCHEM is free for web users and it is available online at http://www.ochem.eu.


Assuntos
Bases de Dados Factuais , Internet , Modelos Químicos , Disseminação de Informação , Gestão da Informação , Relação Quantitativa Estrutura-Atividade , Interface Usuário-Computador
2.
J Chem Inf Model ; 50(12): 2094-111, 2010 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-21033656

RESUMO

The estimation of accuracy and applicability of QSAR and QSPR models for biological and physicochemical properties represents a critical problem. The developed parameter of "distance to model" (DM) is defined as a metric of similarity between the training and test set compounds that have been subjected to QSAR/QSPR modeling. In our previous work, we demonstrated the utility and optimal performance of DM metrics that have been based on the standard deviation within an ensemble of QSAR models. The current study applies such analysis to 30 QSAR models for the Ames mutagenicity data set that were previously reported within the 2009 QSAR challenge. We demonstrate that the DMs based on an ensemble (consensus) model provide systematically better performance than other DMs. The presented approach identifies 30-60% of compounds having an accuracy of prediction similar to the interlaboratory accuracy of the Ames test, which is estimated to be 90%. Thus, the in silico predictions can be used to halve the cost of experimental measurements by providing a similar prediction accuracy. The developed model has been made publicly available at http://ochem.eu/models/1 .


Assuntos
Benchmarking/métodos , Classificação/métodos , Testes de Mutagenicidade/métodos , Relação Quantitativa Estrutura-Atividade , Testes de Mutagenicidade/normas , Análise de Componente Principal
3.
J Comput Aided Mol Des ; 19(6): 453-63, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16231203

RESUMO

Internet technology offers an excellent opportunity for the development of tools by the cooperative effort of various groups and institutions. We have developed a multi-platform software system, Virtual Computational Chemistry Laboratory, http://www.vcclab.org, allowing the computational chemist to perform a comprehensive series of molecular indices/properties calculations and data analysis. The implemented software is based on a three-tier architecture that is one of the standard technologies to provide client-server services on the Internet. The developed software includes several popular programs, including the indices generation program, DRAGON, a 3D structure generator, CORINA, a program to predict lipophilicity and aqueous solubility of chemicals, ALOGPS and others. All these programs are running at the host institutes located in five countries over Europe. In this article we review the main features and statistics of the developed system that can be used as a prototype for academic and industry models.


Assuntos
Simulação por Computador , Desenho de Fármacos , Internet , Modelos Químicos , Software
4.
Bioinformatics ; 20(17): 3284-5, 2004 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-15217811

RESUMO

The Maximal Margin (MAMA) linear programming classification algorithm has recently been proposed and tested for cancer classification based on expression data. It demonstrated sound performance on publicly available expression datasets. We developed a web interface to allow potential users easy access to the MAMA classification tool. Basic and advanced options provide flexibility in exploitation. The input data format is the same as that used in most publicly available datasets. This makes the web resource particularly convenient for non-expert machine learning users working in the field of expression data analysis.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Internet , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Programação Linear , Software , Inteligência Artificial , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA