Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Phys Chem A ; 127(50): 10613-10620, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38059354

RESUMO

We present a pH-dependent study of the excited state dynamics of a novel Ru complex bearing a 4-hydroxy thiazol-substituted dppz (dipyridophenazine) ligand (RuTzOH) and its deprotonated form (RuTzO-). We combine steady-state and time-resolved absorption and emission spectroscopy with electrochemical investigations to characterize the excited state relaxation, which upon photoexcitation at 400 nm is determined by a multitude of initially populated MLCT states for both complexes. Subsequently, for RuTzOH, two long-lived excited states are populated, leading to dual emission from the complexes, a feature that vanishes upon deprotonation. Upon deprotonation, the electron density on the dppz moiety increases significantly, leading to rapid energy populating ligand-centered states and thus deactivating the initially excited MLCT states.

2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835330

RESUMO

Diabetic foot infection (DFI) management requires complex multidisciplinary care pathways with off-loading, debridement and targeted antibiotic treatment central to positive clinical outcomes. Local administration of topical treatments and advanced wound dressings are often used for more superficial infections, and in combination with systemic antibiotics for more advanced infections. In practice, the choice of such topical approaches, whether alone or as adjuncts, is rarely evidence-based, and there does not appear to be a single market leader. There are several reasons for this, including a lack of clear evidence-based guidelines on their efficacy and a paucity of robust clinical trials. Nonetheless, with a growing number of people living with diabetes, preventing the progression of chronic foot infections to amputation is critical. Topical agents may increasingly play a role, especially as they have potential to limit the use of systemic antibiotics in an environment of increasing antibiotic resistance. While a number of advanced dressings are currently marketed for DFI, here we review the literature describing promising future-focused approaches for topical treatment of DFI that may overcome some of the current hurdles. Specifically, we focus on antibiotic-impregnated biomaterials, novel antimicrobial peptides and photodynamic therapy.


Assuntos
Doenças Transmissíveis , Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/tratamento farmacológico , Antibacterianos/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Bandagens , Diabetes Mellitus/tratamento farmacológico
3.
Molecules ; 28(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687139

RESUMO

The photophysical properties of Cu(II) complexes with 5,10,15,20-meso-tetrakis(phenyl)porphyrin and 5,10,15,20-meso-tetrakis(N-methylpyridium-4-yl)porphyrin are examined via the luminescence and femtosecond time-resolved absorbance methods, respectively. These studies are supported by DFT and TD-DFT calculations, which highlight the important role played by ligand-to-metal charge-transfer states in directing the system toward either intersystem crossing to the triplet hypersurface or coordinative expansion to a five-coordinate quasi-stable intermediate. The latter processes occur when the porphyrin is photolyzed in the presence of suitably located Lewis bases. Femtosecond time-resolved absorbance measurements of Cu(II)-5,10,15,20-meso-tetrakis(N-methylpyridium-4-yl)porphyrin confirm that the coordinative expansion in water occurs in approximately 700 fs, while crossing to the triplet hypersurface takes approximately 140 fs in the same solvent. These processes are mutually exclusive, although both can occur simultaneously depending on the environment of the porphyrin. The ratio of the two processes depends on the relative orientation of the Lewis base with respect to the copper atom at the time of excitation. As a consequence, copper porphyrins such as these are excellent probes in the environment of the porphyrin and can be used to identify the location of the porphyrin when interacting with DNA fragments.

4.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241890

RESUMO

Three novel rhenium N-heterocyclic carbene complexes, [Re]-NHC-1-3 ([Re] = fac-Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re-NHC-1 and Re-NHC-2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re-NHC-2 differs from Re-NHC-1 by replacing N-H with an N-benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re-NHC-2 with the larger pyrene gives Re-NHC-3. The two-electron electrochemical reductions of Re-NHC-2 and Re-NHC-3 result in the formation of the five-coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re-Re bound dimer intermediates at the second cathodic wave R2. All three Re-NHC-1-3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re-NHC-3, being the most effective for this conversion. Re-NHC-1 and Re-NHC-2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re-NHC-3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re-NHC-3 is red-shifted compared to those of Re-NHC-1 and Re-NHC-2, and previously reported similar [Re]-NHC complexes. This observation, together with TD-DFT calculations, suggests that the nature of the lowest-energy optical excitation for Re-NHC-3 has π→π*(NHC-pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re-NHC-3 are attributed to the extended conjugation of the π-electron system, leading to the beneficial modulation of the strongly electron-donating tendency of the NHC group.

5.
Inorg Chem ; 60(2): 760-773, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33356204

RESUMO

Transition-metal-based donor-acceptor systems can produce long-lived excited charge-transfer states by visible-light irradiation. The novel ruthenium(II) polypyridyl type complexes Ru1 and Ru2 based on the dipyridophenazine ligand (L0) directly linked to 4-hydroxythiazoles of different donor strengths were synthesized and photophysically characterized. The excited-state dynamics were investigated by femtosecond-to-nanosecond transient absorption and nanosecond emission spectroscopy complemented by time-dependent density functional theory calculations. These results indicate that photoexcitation in the visible region leads to the population of both metal-to-ligand charge-transfer (1MLCT) and thiazole (tz)-induced intraligand charge-transfer (1ILCT) states. Thus, the excited-state dynamics is described by two excited-state branches, namely, the population of (i) a comparably short-lived phenazine-centered 3MLCT state (τ ≈ 150-400 ps) and (ii) a long-lived 3ILCT state (τ ≈ 40-300 ns) with excess charge density localized on the phenazine and tz moieties. Notably, the ruthenium(II) complexes feature long-lived dual emission with lifetimes in the ranges τEm,1 ≈ 40-300 ns and τEm,2 ≈ 100-200 ns, which are attributed to emission from the 3ILCT and 3MLCT manifolds, respectively.

6.
Chemphyschem ; 19(22): 3084-3091, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30221834

RESUMO

Recent studies on hydrogen-generating supramolecular bimetallic photocatalysts indicate a more important role of the peripheral ligands than expected, motivating us to design a Ru/Pt complex with 4,7-diphenyl-1,10-phenanthroline peripheral ligands. Photoinduced intra- and inter-ligand internal conversion processes have been investigated using transient absorption spectroscopy, spanning the femto- to nanosecond timescale. After photoexcitation and ultrafast intersystem crossing, triplet states localised on either the peripheral ligands or on the bridging ligand/catalytic unit are populated in a non-equilibrated way. Time-resolved photoluminescence demonstrates that the lifetime for the Ru/Pt dinuclear species (795±8 ns) is significantly less than that of the mononuclear analogue (1375±20 ns). The photocatalytic studies show modest hydrogen turnover numbers, which is possibly caused by the absence of an excited state equilibrium. Finally, we identify challenges that must be overcome to further develop this class of photocatalysts and propose directions for future research.

7.
Chemistry ; 23(22): 5330-5337, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28195373

RESUMO

The synthesis, photophysical properties and photocatalytic efficiency of a range of novel supramolecular assemblies of the type [Ru(dceb)2 (µ-bisbpy)MCl2 ][PF6 ]2 and [Ru(bpy)2 (µ-bisbpy)MCl2 ][PF6 ]2 (M=Pd or Pt, dceb=diethyl 2,2'-bipyridine-4,4'-dicarboxylate, bpy=2,2'-bipyridine and bisbpy=2,2':5',3'':6'',2'''-quaterpyridine) are reported. Photocatalytic hydrogen generation was dependent on the nature of the peripheral ligand, on the catalytic centre and on the amount of water present in the photocatalytic mixture. The best catalytic conditions were obtained with the dceb peripheral ligand (turnover numbers up to 513 after 18 h). The experimental data and DFT calculations on both the bpy- and dceb-based compounds indicated that the peripheral dceb ligands participated in the photocatalytic process.

8.
Inorg Chem ; 55(6): 2685-90, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26925834

RESUMO

The photocatalytic generation of hydrogen (H2) from protons by two cyclometalated ruthenium-platinum polypyridyl complexes, [Ru(bpy)2(2,5-bpp)PtIS](2+) (1) and [Ru(dceb)2(2,5-bpp)PtIS](2+) (2) [where bpy = 2,2'-bipyridine, 2,5-bpp = 2,2',5',2″-terpyridine, dceb = 4,4'-di(carboxyethyl)bipyridine, and S = solvent], is reported. Turnover numbers (TONs) for H2 generation were increased by nearly an order of magnitude by the introduction of carboxyethyl ester units, i.e., from 80 for 1P to 650 for 2P after 6 h of irradiation, with an early turnover frequency (TOF) increasing from 15 to 200 h(-1). The TON and TOF values for 2P are among the highest reported to date for supramolecular photocatalysts. The increase correlates with stabilization of the excited states localized on the peripheral ligands of the light-harvesting Ru(II) center.

9.
Faraday Discuss ; 185: 143-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26444433

RESUMO

A series of supramolecular assemblies of the type [Ru(L-L)2(L'-L)MX2)](n+) are reported where L-L is 2,2'-bipyridine (bipy), 4,4'-di-tetra-butyl-bipyridine (tbbipy) or 4,4'-diethoxycarbonyl-2,2'-bipyridine (dceb), L-L' is tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz), 2,2':5',2''-terpyridine (2,5-bpp), 2,2':6',2''-terpyridine, (2,6-bpp), 2,5-di(pyridine-2-yl)pyrazine (2,5-dpp) or 2,3-di(pyridine-2-yl)pyrazine (2,3-dpp), and MX2 is PdCl2, PtCl2 or PtI2. The photocatalytic behaviour with respect to hydrogen generation of these compounds and their ultrafast photophysical properties are discussed as a function of the nature of the peripheral ligands, the bridging ligands and the catalytic centre. The results obtained show how differences in the chemical composition of the photocatalysts can affect intramolecular photoinduced electron transfer processes and the overall photocatalytic efficiency.

10.
Phys Chem Chem Phys ; 16(11): 5229-36, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24487702

RESUMO

Two BODIPY-cobaloxime complexes; [{Co(dmgH)2Cl}{3-[bis-(4-ethyl-3,5-dimethyl-1H-pyrrol-2-yl)-methyl]-pyridine-borondiflouride}] (1a) and [{Co(dmgH)2Cl}{4-[bis-(4-ethyl-3,5-dimethyl-1H-pyrrol-2-yl)-methyl]-pyridine-borondiflouride}] (2a) (BODIPY = boron dipyrromethene), (dmgH = dimethylglyoxime) have been synthesised and studied as model catalytic systems for the generation of hydrogen gas in aqueous media. Under photochemical conditions, neither complex catalysed the reduction of water to hydrogen. However, both complexes showed considerable activity under electrochemical conditions. Turn-over-numbers for hydrogen production of 1.65 × 10(4) and 1.08 × 10(4) were obtained for 1a and 2a respectively following potentiostatic electrolysis at -1.2 V vs. Ag/AgCl after 1 hour. Quantum chemical calculations were performed to provide an explanation for the lack of photochemical activity.

11.
Phys Chem Chem Phys ; 16(39): 21230-3, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25188765

RESUMO

Multimodal photo, thermal and electrochemical approaches toward CO release from the amino carbene complex [(CO)5CrC(NC4H8)CH3] is reported. Picosecond time resolved infrared spectroscopy was used to probe the photo-induced early state dynamics leading to CO release, and DFT calculations confirmed that CO release occurs from a singlet excited state.


Assuntos
Monóxido de Carbono/química , Cromo/química , Técnicas Eletroquímicas , Metano/análogos & derivados , Compostos Organometálicos/química , Temperatura , Metano/química , Processos Fotoquímicos , Teoria Quântica
12.
Inorg Chem ; 52(9): 5395-402, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23594091

RESUMO

Analogues of [Ru(bpy)3](2+) were prepared in which one pyridine ligand site is substituted by a N-heterocyclic carbene (NHC) ligand, that is, either by an imidazolylidene with a variable wingtip group R (R = Me, 3a; R = Et, 3b; R = iPr, 3c), or by a benzimidazolylidene (Me wingtip group, 3d), or by a 1,2,3-triazolylidene (Me wingtip group, 3e). All complexes were characterized spectroscopically, photophysically, and electrochemically. An increase of the size of the wingtip groups from Me to Et or iPr groups distorts the octahedral geometry (NMR spectroscopy) and curtails the reversibility of the ruthenium oxidation. NHC ligands with methyl wingtip groups display reversible ruthenium oxidation at a potential that reflects the donor properties of the NHC ligand (triazolylidene > imidazolylidene > benzimidazolylidene). The most attractive properties were measured for the triazolylidene ruthenium complex 3e, featuring the smallest gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the series (2.41 eV), a slightly red-shifted absorption profile, and reasonable excited-state lifetime (188 ns) when compared to [Ru(bpy)3](2+). These features demonstrate the potential utility of triazolylidene ruthenium complexes as photosensitizers for solar energy conversion.

13.
Phys Chem Chem Phys ; 15(7): 2411-20, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23301246

RESUMO

Photoactive NiO electrodes for cathodic dye-sensitised solar cells (p-DSCs) have been prepared with thicknesses ranging between 0.4 and 3.0 µm by spray-depositing pre-formed NiO nanoparticles on fluorine-doped tin oxide (FTO) coated glass substrates. The larger thicknesses were obtained in sequential sintering steps using a conventional furnace (CS) and a newly developed rapid discharge sintering (RDS) method. The latter procedure is employed for the first time for the preparation of p-DSCs. In particular, RDS represents a scalable procedure that is based on microwave-assisted plasma formation that allows the production in series of mesoporous NiO electrodes with large surface areas for p-type cell photocathodes. RDS possesses the unique feature of transmitting heat from the bulk of the system towards its outer interfaces with controlled confinement of the heating zone. The use of RDS results in a drastic reduction of processing times with respect to other deposition methods that involve heating/calcination steps with associated reduced costs in terms of energy. P1-dye sensitized NiO electrodes obtained via the RDS procedure have been tested in DSC devices and their performances have been analysed and compared with those of cathodic DSCs derived from CS-deposited samples. The largest conversion efficiencies (0.12%) and incident photon-to-current conversion efficiencies, IPCEs (50%), were obtained with sintered NiO electrodes having thicknesses of ~1.5-2.0 µm. In all the devices, the photogenerated holes in NiO live significantly longer (τ(h) ~ 1 s) than have previously been reported for P1-sensitized NiO photocathodes. In addition, P1-sensitised sintered electrodes give rise to relatively high photovoltages (up to 135 mV) when the triiodide-iodide redox couple is used.


Assuntos
Corantes/química , Micro-Ondas , Níquel/química , Energia Solar , Varredura Diferencial de Calorimetria , Técnicas Eletroquímicas , Eletrodos , Nanopartículas Metálicas/química
14.
Inorg Chem ; 51(4): 1977-9, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22296290

RESUMO

The effect of the water concentration on the quantitation of formate from dimethylformamide in the presence of electron-donating bases using ion chromatography is reported. This observation has important implications in the area of the photocatalytic reduction of CO(2), where formate levels are often used to calculate catalyst turnover numbers.

15.
J Phys Chem A ; 116(3): 962-9, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22204670

RESUMO

The photochemistry of (η(6)-anisole)Cr(CO)(3) and (η(6)-thioanisole)Cr(CO)(3) was investigated by picosecond time-resolved infrared spectroscopy in n-heptane solution at 298 K. Two independent excited states are populated following 400 nm excitation of each of these complexes. An excited state with some metal-to-CO charge-transfer character is responsible for the CO-loss process, which is slow compared to CO-loss from Cr(CO)(6). Observed first order rate constants of 1.8 × 10(10) s(-1) and 2.5 × 10(10) s(-1) were obtained for the anisole and thioanisole complexes, respectively. The second excited state has metal-to-arene charge transfer character and results in a haptotropic shift of the thioanisole ligand. DFT calculations characterized the excited states involved and the nature of the haptotropic shift intermediate observed for the thioanisole species.


Assuntos
Cromo/química , Hidrocarbonetos Clorados/química , Teoria Quântica , Sulfetos/química , Ligantes , Processos Fotoquímicos , Fotoquímica , Espectrofotometria Infravermelho , Fatores de Tempo
16.
J Phys Chem A ; 115(14): 2985-93, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21413775

RESUMO

The photochemistry of (η(6)-methylbenzoate)Cr(CO)(3), (η(6)-naphthalene)Cr(CO)(3), and (η(6)-phenanthrene)Cr(CO)(3) in n-heptane solution was investigated by picosecond time-resolved infrared spectroscopy (TRIR). The observation of two transient IR features in the organic carbonyl region at 1681 and 1724 cm(-1) following 400 nm excitation of (η(6)-methylbenzoate)Cr(CO)(3) confirms formation of two excited states which are classified as metal-to-arene charge transfer (MACT) and metal-to-CO charge transfer (MCCT), respectively. Time-dependent density functional theory calculations have been used to support these assignments. Population of the MCCT excited state results in a slow (150 ps) expulsion of one CO ligand. Excitation of (η(6)-naphthalene)Cr(CO)(3) or (η(6)-phenanthrene)Cr(CO)(3) at either 400 or 345 nm produced two excited states: the MCCT state results in CO loss, while the MACT excited state results in a change to the coordination mode of the polyaromatic ligands before relaxing to the parent complex. A comparison of the infrared absorptions observed following the population of the MACT excited state with those calculated for nonplanar polyaromatic intermediates provides a model for the reduced hapticity species.


Assuntos
Heptanos/química , Compostos Organometálicos/química , Benzoatos/química , Monóxido de Carbono/química , Cromo/química , Naftalenos/química , Fenantrenos/química , Fotoquímica , Soluções , Espectrofotometria Infravermelho , Fatores de Tempo
17.
J Phys Chem B ; 125(6): 1550-1557, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33538173

RESUMO

We report the synthesis and photophysical properties of a neutral BODIPY photosensitizing copolymer (poly-8-(4-hydroxymethylphenyl)-4,4-difluoro-2,6-diethynyl-4-bora-3a,4a-diaza-s-indacene) containing ethynylbenzene links between the BODIPY units. The copolymer absorbs further towards the red in the UV-vis spectrum compared to the BODIPY precursor. Photolysis of the polymer produces a singlet excited state which crosses to the triplet surface in less than 300 ps. This triplet state was used to form singlet oxygen with a quantum yield of 0.34. The steps leading to population of the triplet state were studied using time-resolved spectroscopic techniques spanning the pico- to nanosecond timescales. The ability of the BODIPY polymer to generate a biocidal species for bactericidal activity in both solution- and coating-based studies was assessed. When the BODIPY copolymer was dropcast onto a surface, 4 log and 6 log reductions in colony forming units/ml representative of Gram-positive and Gram-negative bacteria, respectively, under illumination at 525 nm were observed. The potent broad-spectrum antimicrobial activity of a neutral metal-free copolymer when exposed to visible light conditions may have potential clinical applications in infection management.


Assuntos
Anti-Infecciosos , Fármacos Fotossensibilizantes , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Compostos de Boro/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fármacos Fotossensibilizantes/farmacologia , Polímeros
18.
Front Chem ; 9: 795877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004612

RESUMO

Two novel supramolecular complexes RuRe ([Ru(dceb)2(bpt)Re(CO)3Cl](PF6)) and RuPt ([Ru(dceb)2(bpt)PtI(H2O)](PF6)2) [dceb = diethyl(2,2'-bipyridine)-4,4'-dicarboxylate, bpt = 3,5-di(pyridine-2-yl)-1,2,4-triazolate] were synthesized as new catalysts for photocatalytic CO2 reduction and H2 evolution, respectively. The influence of the catalytic metal for successful catalysis in solution and on a NiO semiconductor was examined. IR-active handles in the form of carbonyl groups on the peripheral ligand on the photosensitiser were used to study the excited states populated, as well as the one-electron reduced intermediate species using infrared and UV-Vis spectroelectrochemistry, and time resolved infrared spectroscopy. Inclusion of ethyl-ester moieties led to a reduction in the LUMO energies on the peripheral bipyridine ligand, resulting in localization of the 3MLCT excited state on these peripheral ligands following excitation. RuPt generated hydrogen in solution and when immobilized on NiO in a photoelectrochemical (PEC) cell. RuRe was inactive as a CO2 reduction catalyst in solution, and produced only trace amounts of CO when the photocatalyst was immobilized on NiO in a PEC cell saturated with CO2.

19.
Inorg Chem ; 49(22): 10214-6, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20945931

RESUMO

Time-resolved infrared spectroscopy was used to probe the photochemistry of three (µ(2)-alkyne)Co(2)(CO)(6) complexes. The data indicate the formation of a triplet diradical species, with lifetimes in the range 38-71 ps. Theoretical calculations support these experimental findings. No evidence for the CO loss species, (µ(2)-alkyne)Co(2)(CO)(5), was observed, and this is rationalized by the low quantum yield for this process at the excitation wavelengths used.

20.
J Phys Chem A ; 114(43): 11425-31, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-20939621

RESUMO

The electronic structure of (η6-benzene)Cr(CO)3 has been calculated using density functional theory and a molecular orbital interaction diagram constructed based on the Cr(CO)3 and benzene fragments. The highest occupied molecular orbitals are mainly metal based. The nature of the lowest energy excited states were determined by time-dependent density functional theory, and the lowest energy excited state was found to have significant metal to carbonyl charge transfer character. The photochemistry of (η6-benzene)Cr(CO)3 was investigated by time-resolved infrared spectroscopy with picosecond time resolution. The low energy excited state was detected following irradiation at 400 nm, and this exhibited ν(CO) bands at lower energy than the equivalent ν(CO) bands of (η6-benzene)Cr(CO)3, consistent with metal to carbonyl charge transfer character, and is formed with excess vibrational energy, relaxing to the v = 0 vibrational state within 3 ps. The resulting "cold" excited state decays to form the CO-loss species (η6-benzene)Cr(CO)2 in approximately 70% yield and to reform (η6-benzene)Cr(CO)3 within 150 ps. The rates of relaxation from the vibrationally hot state to the cold excited state and its subsequent reaction to yield (η6-benzene)Cr(CO)2 were measured over a range of temperatures from 274 to 320 K, and the activation parameters for both processes were obtained from Eyring plots. The vibrational relaxation exhibits a negative activation enthalpy ΔH(‡) (-10 (±4) kJ mol⁻¹) and a negative activation entropy ΔS(‡) (-50 (±16) J mol⁻¹ K⁻¹). A significant barrier (ΔH(‡) = +12 (±4) kJ mol⁻¹) was obtained for the formation of (η6-benzene)Cr(CO)2 with a ΔS(‡) value close to zero. These data are used to propose a model for the CO-loss process to yield (η6-benzene)Cr(CO)2 and to explain why low temperature irradiation of (η6-benzene)Cr(CO)3 with light of wavelengths greater than 400 nm produced relatively minor amounts of (η6-benzene)Cr(CO)2.


Assuntos
Benzeno/química , Monóxido de Carbono/química , Cromo/química , Heptanos/química , Compostos Organometálicos/química , Teoria Quântica , Estrutura Molecular , Processos Fotoquímicos , Soluções , Espectrofotometria Infravermelho , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA