Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(52): 33649-33659, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376224

RESUMO

Axonal conduction velocity, which ensures efficient function of the brain network, is related to axon diameter. Noninvasive, in vivo axon diameter estimates can be made with diffusion magnetic resonance imaging, but the technique requires three-dimensional (3D) validation. Here, high-resolution, 3D synchrotron X-ray nano-holotomography images of white matter samples from the corpus callosum of a monkey brain reveal that blood vessels, cells, and vacuoles affect axonal diameter and trajectory. Within single axons, we find that the variation in diameter and conduction velocity correlates with the mean diameter, contesting the value of precise diameter determination in larger axons. These complex 3D axon morphologies drive previously reported 2D trends in axon diameter and g-ratio. Furthermore, we find that these morphologies bias the estimates of axon diameter with diffusion magnetic resonance imaging and, ultimately, impact the investigation and formulation of the axon structure-function relationship.


Assuntos
Axônios/fisiologia , Animais , Feminino , Haplorrinos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Bainha de Mielina/metabolismo , Relação Estrutura-Atividade , Vacúolos/metabolismo , Substância Branca/anatomia & histologia
2.
Sensors (Basel) ; 22(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271210

RESUMO

Deductive reasoning and working memory are integral parts of executive functioning and are important skills for blind people in everyday life. Despite the importance of these skills, the influence of visual experience on reasoning and working memory skills, as well as on the relationship between these, is unknown. In this study, fifteen participants with congenital blindness (CB), fifteen with late blindness (LB), fifteen sighted blindfolded controls (SbfC), and fifteen sighted participants performed two tasks of deductive reasoning and two of working memory. We found that while the CB and LB participants did not differ in their deductive reasoning abilities, the CB group performed worse than the sighted controls, and the LB group performed better than the SbfC group. Those with CB outperformed all the other groups in both of the working memory tests. Working memory is associated with deductive reasoning in all three visually impaired groups, but not in the sighted group. These findings suggest that deductive reasoning is not a uniform skill, and that it is associated with visual impairment onset, the level of reasoning difficulty, and the degree of working memory load.


Assuntos
Memória de Curto Prazo , Resolução de Problemas , Cegueira , Humanos
3.
J Neurosci ; 40(10): 2094-2107, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31949106

RESUMO

The frontal lobe is central to distinctive aspects of human cognition and behavior. Some comparative studies link this to a larger frontal cortex and even larger frontal white matter in humans compared with other primates, yet others dispute these findings. The discrepancies between studies could be explained by limitations of the methods used to quantify volume differences across species, especially when applied to white matter connections. In this study, we used a novel tractography approach to demonstrate that frontal lobe networks, extending within and beyond the frontal lobes, occupy 66% of total brain white matter in humans and 48% in three monkey species: vervets (Chlorocebus aethiops), rhesus macaque (Macaca mulatta) and cynomolgus macaque (Macaca fascicularis), all male. The simian-human differences in proportional frontal tract volume were significant for projection, commissural, and both intralobar and interlobar association tracts. Among the long association tracts, the greatest difference was found for tracts involved in motor planning, auditory memory, top-down control of sensory information, and visuospatial attention, with no significant differences in frontal limbic tracts important for emotional processing and social behaviour. In addition, we found that a nonfrontal tract, the anterior commissure, had a smaller volume fraction in humans, suggesting that the disproportionally large volume of human frontal lobe connections is accompanied by a reduction in the proportion of some nonfrontal connections. These findings support a hypothesis of an overall rearrangement of brain connections during human evolution.SIGNIFICANCE STATEMENT Tractography is a unique tool to map white matter connections in the brains of different species, including humans. This study shows that humans have a greater proportion of frontal lobe connections compared with monkeys, when normalized by total brain white matter volume. In particular, tracts associated with language and higher cognitive functions are disproportionally larger in humans compared with monkeys, whereas other tracts associated with emotional processing are either the same or disproportionally smaller. This supports the hypothesis that the emergence of higher cognitive functions in humans is associated with increased extended frontal connectivity, allowing human brains more efficient cross talk between frontal and other high-order associative areas of the temporal, parietal, and occipital lobes.


Assuntos
Lobo Frontal/anatomia & histologia , Vias Neurais/anatomia & histologia , Substância Branca/anatomia & histologia , Animais , Mapeamento Encefálico/métodos , Chlorocebus aethiops , Imagem de Tensor de Difusão/métodos , Humanos , Processamento de Imagem Assistida por Computador , Macaca fascicularis , Macaca mulatta , Masculino , Especificidade da Espécie
4.
Sensors (Basel) ; 21(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921202

RESUMO

Vision loss has dramatic repercussions on the quality of life of affected people, particularly with respect to their orientation and mobility. Many devices are available to help blind people to navigate in their environment. The EyeCane is a recently developed electronic travel aid (ETA) that is inexpensive and easy to use, allowing for the detection of obstacles lying ahead within a 2 m range. The goal of this study was to investigate the potential of the EyeCane as a primary aid for spatial navigation. Three groups of participants were recruited: early blind, late blind, and sighted. They were first trained with the EyeCane and then tested in a life-size obstacle course with four obstacles types: cube, door, post, and step. Subjects were requested to cross the corridor while detecting, identifying, and avoiding the obstacles. Each participant had to perform 12 runs with 12 different obstacles configurations. All participants were able to learn quickly to use the EyeCane and successfully complete all trials. Amongst the various obstacles, the step appeared to prove the hardest to detect and resulted in more collisions. Although the EyeCane was effective for detecting obstacles lying ahead, its downward sensor did not reliably detect those on the ground, rendering downward obstacles more hazardous for navigation.


Assuntos
Qualidade de Vida , Pessoas com Deficiência Visual , Cegueira , Humanos , Orientação , Reprodutibilidade dos Testes
5.
J Sleep Res ; 28(6): e12866, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31025801

RESUMO

There is ongoing controversy regarding the role of rapid eye movements (EMs) during rapid eye movement (REM) sleep. One prevailing hypothesis is that EMs during REM sleep are indicative of the presence of visual imagery in dreams. We tested the validity of this hypothesis by measuring EMs in blind subjects and correlating these with visual dream content. Eleven blind subjects, of whom five were congenitally blind (CB) and six late blind (LB), and 11 matched sighted control (SC) subjects participated in this study. All participants underwent full-night polysomnography (PSG) recordings that were staged manually following American Academy of Sleep Medicine (AASM) criteria. Nocturnal EMs were detected automatically using a validated EM detector, and EM activity was represented as "EM coverage" computed as percentage of time with EM in each sleep stage. Frequency of sensory dream elements was measured in dream recall questionnaires over a 30-day period. Both blind groups showed less EM coverage during wakefulness, N1, N2 and REM sleep than did controls. CB and LB subjects did not differ in EM activity. Validation of the detector applied to blind subjects revealed an overall accuracy of 95.6 ± 3.6%. Analysis of dream reports revealed that LB subjects reported significantly more visual dream elements than did CB. Although no specific mechanisms can be revealed in the current study, the quasi absence of nocturnal EMs in LB subjects despite preserved visual dream content does not support the visual scanning of dreams hypothesis. Specifically, results suggest a dissociation between EMs and visual dream content in blind individuals.


Assuntos
Sono REM/fisiologia , Pessoas com Deficiência Visual/estatística & dados numéricos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Exp Eye Res ; 177: 55-64, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30071214

RESUMO

Exposure to ethanol in utero leads to several brain development disorders including retinal abnormalities whose underlying cellular pathogenesis remains elusive. We recently reported that fetal alcohol exposure (FAE) in vervet monkeys induces anomalies of full-field electroretinogram (ERG) waveforms that suggest premature aging of the retina. The goal of this study is to characterize the anatomo-functional mechanisms underlying the retinal changes observed in fetal alcohol exposed (FAE) monkeys, and age- and sex-matched normals. First, we examined in vivo the fundus of the eyes, measured intraocular pressure (IOP) and assessed cone activity using flicker ERG. Second, we investigated ex vivo, protein expression and anatomical organization of the retina using Western blotting, classical histology and immunohistochemistry. Our results indicated that the fundus of the eyes showed both, increased vascularization (tessellated fundus) and IOP in FAE monkeys. Furthermore, light-adapted flicker responses above 15 Hz were also significantly higher in FAE monkeys. Although there were no obvious changes in the overall anatomy in the FAE retina, Glial Fibrillary Acidic Protein (GFAP, a potent marker of astrocytes) immunoreactivity was increased in the FAE retinal ganglion cell layer indicating a strong astrogliosis. These alterations were present in juvenile (2 years old) monkeys and persist in adults (8 years old). Moreover, using specific cell type markers, no significant modifications in the morphology of the photoreceptors, horizontal cells, bipolar cells, and amacrine cells were observed. Our data indicate that FAE does indeed induce anatomical changes within the retinal ganglion cell layer that are reflected in the increased photosensitivity of the cone photoreceptors.


Assuntos
Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Doenças dos Macacos/fisiopatologia , Retina/fisiopatologia , Animais , Chlorocebus aethiops , Eletrorretinografia , Proteína Glial Fibrilar Ácida/metabolismo , Pressão Intraocular/fisiologia , Células Ganglionares da Retina/patologia , Vasos Retinianos/patologia
7.
J Sleep Res ; 27(1): 120-128, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621018

RESUMO

We examined the structure, duration and quality of sleep, including non-rapid eye movement sleep and rapid eye movement sleep, in 11 blind individuals without conscious light perception and 11 age- and sex-matched sighted controls. Because blindness is associated with a greater incidence of free-running circadian rhythms, we controlled for circadian phase by a measure of melatonin onset timing. When circadian rhythm was entrained and melatonin onset occurred at normal times, sleep structure did not differ between blind and sighted individuals. On the other hand, an abnormal timing of the circadian phase, including delayed, shifted and unclassifiable melatonin onsets, led to larger rapid eye movement sleep latencies and increased wake times. No differences were observed for stages of non-rapid eye movement sleep, either between congenital and late blind and sighted individuals, or across the different circadian phases. Moreover, abnormal circadian phases were more common in the blind (n = 5) than the sighted (n = 2) sample. Our findings suggest that the sleep structure of blind individuals depends on entrainment of circadian phase, rather than on the absence of vision.


Assuntos
Cegueira/fisiopatologia , Ritmo Circadiano/fisiologia , Sono REM/fisiologia , Sono de Ondas Lentas/fisiologia , Adulto , Biomarcadores/metabolismo , Cegueira/metabolismo , Feminino , Humanos , Masculino , Melatonina/metabolismo , Pessoa de Meia-Idade , Latência do Sono/fisiologia
8.
Neural Plast ; 2018: 6120925, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008742

RESUMO

Because the human brain consumes a disproportionate fraction of the resting body's energy, positron emission tomography (PET) measurements of absolute glucose metabolism (CMRglc) can serve as disease biomarkers. Global mean normalization (GMN) of PET data reveals disease-based differences from healthy individuals as fractional changes across regions relative to a global mean. To assess the impact of GMN applied to metabolic data, we compared CMRglc with and without GMN in healthy awake volunteers with eyes closed (i.e., control) against specific physiological/clinical states, including healthy/awake with eyes open, healthy/awake but congenitally blind, healthy/sedated with anesthetics, and patients with disorders of consciousness. Without GMN, global CMRglc alterations compared to control were detected in all conditions except in congenitally blind where regional CMRglc variations were detected in the visual cortex. However, GMN introduced regional and bidirectional CMRglc changes at smaller fractions of the quantitative delocalized changes. While global information was lost with GMN, the quantitative approach (i.e., a validated method for quantitative baseline metabolic activity without GMN) not only preserved global CMRglc alterations induced by opening eyes, sedation, and varying consciousness but also detected regional CMRglc variations in the congenitally blind. These results caution the use of GMN upon PET-measured CMRglc data in health and disease.


Assuntos
Cegueira/metabolismo , Encéfalo/metabolismo , Glucose/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Adulto , Cegueira/congênito , Cegueira/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Interpretação Estatística de Dados , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Adulto Jovem
9.
Vis Neurosci ; 33: E006, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-27485069

RESUMO

The endogenous cannabinoid system plays important roles in the retina of mice and monkeys via their classic CB1 and CB2 receptors. We have previously reported that the G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, is exclusively expressed in rod photoreceptors in the monkey retina, suggesting its possible role in scotopic vision. To test this hypothesis, we recorded full-field electroretinograms (ERGs) after the intravitreal injection of the GPR55 agonist lysophosphatidylglucoside (LPG) or the selective GPR55 antagonist CID16020046 (CID), under light- and dark-adapted conditions. Thirteen vervet monkeys (Chlorocebus sabaeus) were used in this study: four controls (injected with the vehicle dimethyl sulfoxide, DMSO), four injected with LPG and five with CID. We analyzed amplitudes and latencies of the a-wave (photoreceptor responses) and the b-wave (rod and cone system responses) of the ERG. Our results showed that after injection of LPG, the amplitude of the scotopic b-wave was significantly higher, whereas after the injection of CID, it was significantly decreased, compared to the vehicle (DMSO). On the other hand, the a-wave amplitude, and the a-wave and b-wave latencies, of the scotopic ERG responses were not significantly affected by the injection of either compound. Furthermore, the photopic ERG waveforms were not affected by either drug. These results support the hypothesis that GPR55 plays an instrumental role in mediating scotopic vision.


Assuntos
Visão Noturna/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Receptores de Canabinoides/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Compostos Azabicíclicos/farmacologia , Benzoatos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Chlorocebus aethiops , Eletrorretinografia , Feminino , Glicerofosfatos/farmacologia , Injeções Intravítreas , Masculino , Estimulação Luminosa , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores
10.
Neural Plast ; 2016: 3127658, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977322

RESUMO

The endocannabinoid (eCB) system is widely expressed in various parts of the central nervous system, including the retina. The localization of the key eCB receptors, particularly CB1R and CB2R, has been recently reported in rodent and primate retinas with striking interspecies differences. Little is known about the distribution of the enzymes involved in the synthesis and degradation of these eCBs. We therefore examined the expression and localization of the main components of the eCB system in the retina of mice, tree shrews, and monkeys. We found that CB1R and FAAH distributions are well-preserved among these species. However, expression of NAPE-PLD is circumscribed to the photoreceptor layer only in monkeys. In contrast, CB2R expression is variable across these species; in mice, CB2R is found in retinal neurons but not in glial cells; in tree shrews, CB2R is expressed in Müller cell processes of the outer retina and in retinal neurons of the inner retina; in monkeys, CB2R is restricted to Müller cells. Finally, the expression patterns of MAGL and DAGLα are differently expressed across species. Overall, these results provide evidence that the eCB system is differently expressed in the retina of these mammals and suggest a distinctive role of eCBs in visual processing.


Assuntos
Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Retina/metabolismo , Neurônios Retinianos/metabolismo , Amidoidrolases/metabolismo , Animais , Chlorocebus aethiops , Células Ependimogliais/metabolismo , Lipase Lipoproteica/metabolismo , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipase D/metabolismo , Especificidade da Espécie , Tupaiidae
11.
Neural Plast ; 2016: 6029241, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881120

RESUMO

Magnetic resonance imaging (MRI) of the human brain has provided converging evidence that visual deprivation induces regional changes in white matter (WM) microstructure. It remains unclear how these changes modify network connections between brain regions. Here we used diffusion-weighted MRI to relate differences in microstructure and structural connectedness of WM in individuals with congenital or late-onset blindness relative to normally sighted controls. Diffusion tensor imaging (DTI) provided voxel-specific microstructural features of the tissue, while anatomical connectivity mapping (ACM) assessed the connectedness of each voxel with the rest of the brain. ACM yielded reduced anatomical connectivity in the corpus callosum in individuals with congenital but not late-onset blindness. ACM did not identify any brain region where blindness resulted in increased anatomical connectivity. DTI revealed widespread microstructural differences as indexed by a reduced regional fractional anisotropy (FA). Blind individuals showed lower FA in the primary visual and the ventral visual processing stream relative to sighted controls regardless of the blindness onset. The results show that visual deprivation shapes WM microstructure and anatomical connectivity, but these changes appear to be spatially dissociated as changes emerge in different WM tracts. They also indicate that regional differences in anatomical connectivity depend on the onset of blindness.


Assuntos
Cegueira/patologia , Encéfalo/patologia , Plasticidade Neuronal , Substância Branca/patologia , Adulto , Anisotropia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Neural Plast ; 2016: 1253245, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069692

RESUMO

The expression patterns of the cannabinoid receptor type 1 (CB1R) and the cannabinoid receptor type 2 (CB2R) are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells) and CB2R is exclusively found in the retinal glia (Müller cells). However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp.) in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function.


Assuntos
Potenciais da Membrana/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Retina/metabolismo , Neurônios Retinianos/metabolismo , Animais , Chlorocebus aethiops , Eletrorretinografia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Indóis/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Estimulação Luminosa , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Retina/efeitos dos fármacos , Neurônios Retinianos/efeitos dos fármacos
13.
Dev Psychobiol ; 57(4): 470-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25913787

RESUMO

Prenatal exposure to beverage alcohol is a major cause of mild mental retardation and developmental delay. In nonendangered alcohol-preferring vervet monkeys, we modeled the most common nondysmorphic form of fetal alcohol syndrome disorder with voluntary drinking during the third trimester of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally and persist through infancy (5 months) and juvenile (2 years) stages. Although the volumes of hippocampal subdivisions in FAE animals are not atypical at birth, by age 2, they are only 65-70% of those estimated in age-matched controls. These data suggest that moderate, naturalistic alcohol consumption during late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume.


Assuntos
Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Análise de Variância , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Transtornos do Espectro Alcoólico Fetal , Hipocampo/ultraestrutura , Masculino , Neurônios/ultraestrutura , Gravidez
14.
Neural Plast ; 2015: 469750, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25878902

RESUMO

It is generally acknowledged that congenitally blind individuals develop superior sensory abilities in order to compensate for their lack of vision. Substantial research has been done on somatosensory and auditory sensory information processing of the blind. However, relatively little information is available about compensatory plasticity in the olfactory domain. Although previous studies indicate that blind individuals have superior olfactory abilities, no studies so far have investigated their sense of smell in relation to social and affective communication. The current study compares congenitally blind and normal sighted individuals in their ability to discriminate and identify emotions from body odours. A group of 14 congenitally blind and 14 age- and sex-matched sighted control subjects participated in the study. We compared participants' abilities to detect and identify by smelling sweat from donors who had been watching excerpts from emotional movies showing amusement, fear, disgust, or sexual arousal. Our results show that congenitally blind subjects outperformed sighted controls in identifying fear from male donors. In addition, there was a strong tendency that blind individuals were also better in detecting disgust. Our findings reveal that congenitally blind individuals are better at identifying ecologically important emotions and provide new insights into the mechanisms of social and affective communication in blindness.


Assuntos
Cegueira/psicologia , Emoções , Medo , Plasticidade Neuronal , Percepção Olfatória , Adulto , Afeto , Cegueira/congênito , Discriminação Psicológica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Odorantes , Suor
15.
Neuroimage ; 103: 202-213, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25219332

RESUMO

Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal to the voxel size showed that conventional higher-order interpolation methods improved the geometrical representation of white-matter tracts with reduced partial-volume-effect (PVE), except at tract boundaries. Simulations and interpolation of ex-vivo monkey brain DWI datasets revealed that conventional interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical resolution and more anatomical details in complex regions such as tract boundaries and cortical layers, which are normally only visualized at higher image resolutions. Similar results were found with typical clinical human DWI dataset. However, a possible bias in quantitative values imposed by the interpolation method used should be considered. The results indicate that conventional interpolation methods can be successfully applied to DWI datasets for mining anatomical details that are normally seen only at higher resolutions, which will aid in tractography and microstructural mapping of tissue compartments.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Algoritmos , Animais , Feminino , Haplorrinos , Humanos , Imageamento Tridimensional/métodos , Masculino
16.
Brain Struct Funct ; 229(1): 195-205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062204

RESUMO

Patients with Anorexia Nervosa (AN) and athletes share intense physical activity and pituitary hormonal disturbances related to absolute (AN) or relative (athletes) undernutrition. Pituitary gland (PG) structure evaluations in those conditions are scarce, and did not differentiate anterior from posterior lobe. We evaluated the structure-function relationship of anterior and posterior PG in AN and athletes, and potential reversibility of this alteration in a group of weight-recovered patients (AN_Rec). Manual delineation of anterior (AP) and posterior (PP) PG was performed on T1-weighted MR images in 17 women with AN, 15 women with AN_Rec, 18 athletes women and 25 female controls. Anthropometric, hormonal, and psychometric parameters were explored and correlated with PG volumes. AP volume (APV) was lower in AN (448 ± 82 mm3), AN_Rec (505 ± 59 mm3), and athletes (540 ± 101 mm3) vs. Controls (615 ± 61 mm3, p < 0.00001, p < 0.00001 and p = 0.02, respectively); and smaller in AN vs. AN_Rec (p = 0.007). PP volume did not show any differences between the groups. APV was positively correlated with weight (R = 0.36, p = 0.011) in AN, and luteinizing hormone (R = 0.35, p = 0.014) in total group. In AN, mean growth hormone (GH) was negatively correlated with global pituitary volume (R = 0.31, p = 0.031) and APV (R = 0.29, p = 0.037). Absolute and relative undernutrition led to a decreased anterior pituitary gland volume, which was reversible with weight gain, correlated with low bodyweight, and blockade of gonadal hypothalamic-pituitary axis. Intriguing inverse correlation between anterior pituitary gland volume and GH plasma level could suggests a low storage capacity of anterior pituitary gland and increased reactivity to low insulin-like growth factor type 1.


Assuntos
Anorexia Nervosa , Desnutrição , Adeno-Hipófise , Feminino , Humanos , Anorexia Nervosa/metabolismo , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Relação Estrutura-Atividade , Fator de Crescimento Insulin-Like I/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-38884652

RESUMO

RATIONALE: Glucagon-like peptide-1 (GLP-1) receptor agonists reduce alcohol consumption in rodents and non-human primates. Semaglutide is a new long-acting GLP-1 receptor agonist, widely used in the clinic against type 2 diabetes and obesity. It is also reported to reduce alcohol intake in rodents. OBJECTIVES: This study investigates the possible inhibitory effect of semaglutide on alcohol intake in alcohol-preferring African green monkeys. METHODS: We performed a vehicle-controlled study on male monkeys that had demonstrated a preference for alcohol. In the monkeys selected for voluntary alcohol drinking, alcohol consumption was measured for ten days at baseline (Monday to Friday for two weeks). During this period, the monkeys had access to alcohol 4 h per day and free access to water 24 h per day. After two weeks of baseline measurements, the monkeys were randomized to semaglutide or vehicle. Each group consisted of ten monkeys, and the two groups were balanced with respect to baseline alcohol intake. Following the baseline period, the monkeys were treated with escalating doses of semaglutide (up to 0.05 mg/kg) or vehicle subcutaneously twice weekly for two weeks during which period alcohol was not available. After uptitration, the monkeys had access to alcohol 4 h daily for 20 days (Monday to Friday for 4 weeks), and alcohol consumption was measured. During this alcohol exposure period, treatment with semaglutide (0.05 mg/kg twice weekly) or vehicle continued for three weeks followed by a one-week washout period. RESULTS: Compared to the vehicle, semaglutide significantly reduced alcohol intake. There were no signs of emetic events or changes in water intake. CONCLUSIONS: These data demonstrate for the first time the potent effect of semaglutide in reducing voluntary alcohol intake in non-human primates and further substantiate the need for clinical trials investigating the effect of semaglutide in patients with alcohol-use disorder.

18.
Brain Struct Funct ; 229(4): 1001-1010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502330

RESUMO

The probabilistic topography and inter-individual variability of the pituitary gland (PG) remain undetermined. The absence of a standardized reference atlas hinders research on PG volumetrics. In this study, we aimed at creating maximum probability maps for the anterior and posterior PG in young female adults. We manually delineated the anterior and posterior parts of the pituitary glands in 26 healthy subjects using high-resolution MRI T1 images. A three-step procedure and a cost function-masking approach were employed to optimize spatial normalization for the PG. We generated probabilistic atlases and maximum probability maps, which were subsequently coregistered back to the subjects' space and compared to manual delineations. Manual measurements led to a total pituitary volume of 705 ± 88 mm³, with the anterior and posterior volumes measuring 614 ± 82 mm³ and 91 ± 20 mm³, respectively. The mean relative volume difference between manual and atlas-based estimations was 1.3%. The global pituitary atlas exhibited an 80% (± 9%) overlap for the DICE index and 67% (± 11%) for the Jaccard index. Similarly, these values were 77% (± 13%) and 64% (± 14%) for the anterior pituitary atlas and 62% (± 21%) and 47% (± 17%) for the posterior PG atlas, respectively. We observed a substantial concordance and a significant correlation between the volume estimations of the manual and atlas-based methods for the global pituitary and anterior volumes. The maximum probability maps of the anterior and posterior PG lay the groundwork for automatic atlas-based segmentation methods and the standardized analysis of large PG datasets.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Adulto , Humanos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Hipófise/diagnóstico por imagem
19.
Magn Reson Med ; 70(3): 711-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23023798

RESUMO

The ActiveAx technique fits the minimal model of white matter diffusion to diffusion MRI data acquired using optimized protocols that provide orientationally invariant indices of axon diameter and density. We investigated how limitations of the available maximal gradient strength (Gmax) on a scanner influence the sensitivity to a range of axon diameters. Multishell high-angular-diffusion-imaging (HARDI) protocols for Gmax of 60, 140, 200, and 300 mT/m were optimized for the pulsed-gradient-spin-echo (PGSE) sequence. Data were acquired on a fixed monkey brain and Monte-Carlo simulations supported the results. Increasing Gmax reduces within-voxel variation of the axon diameter index and improves contrast beyond what is achievable with higher signal-to-noise ratio. Simulations reveal an upper bound on the axon diameter (∼10 µm) that pulsed-gradient-spin-echo measurements are sensitive to, due to a trade-off between short T2 and the long diffusion time needed to probe larger axon diameters. A lower bound (∼2.5 µm) slightly dependent on Gmax was evident, below which axon diameters are identifiable as small, but impossible to differentiate. These results emphasize the key-role of Gmax for enhancing contrast between axon diameter distributions and are, therefore, relevant in general for microstructure imaging methods and highlight the need for increased Gmax on future commercial systems.


Assuntos
Axônios , Imagem de Difusão por Ressonância Magnética/métodos , Animais , Haplorrinos , Método de Monte Carlo , Sensibilidade e Especificidade
20.
Chem Senses ; 38(6): 509-17, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23667250

RESUMO

Sight is undoubtedly not only important for food identification and selection but also for the modulation of gustatory sensitivity. We can, therefore, assume that taste sensitivity and eating habits are affected by visual deprivation from birth. We measured taste detection and identification thresholds of the 5 basic tastants in 13 congenitally blind and 13 sighted control subjects. Participants also answered several eating habits questionnaires, including the Food Neophobia Scale, the Food Variety Seeking Tendency Scale, the Intuitive Eating Scale, and the Body Awareness Questionnaire. Our behavioral results showed that compared with the normal sighted, blind subjects have increased thresholds for taste detection and taste identification. This finding is at odds with the superior performance of congenitally blind subjects in several tactile, auditory and olfactory tasks. Our psychometric data further indicate that blind subjects more strongly rely on internal hunger and satiety cues, instead of external contextual or emotional cues, to decide when and what to eat. We suggest that the lower taste sensitivity observed in congenitally blind individuals is due to various blindness-related obstacles when shopping for food, cooking and eating out, all of which contribute to underexpose the gustatory system to a larger variety of taste stimuli.


Assuntos
Oftalmopatias Hereditárias/fisiopatologia , Oftalmopatias Hereditárias/psicologia , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/psicologia , Miopia/fisiopatologia , Miopia/psicologia , Cegueira Noturna/fisiopatologia , Cegueira Noturna/psicologia , Paladar , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Limiar Sensorial , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA