Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pathol ; 248(4): 421-437, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30982971

RESUMO

Tspan8 exhibits a functional role in many cancer types including pancreatic, colorectal, oesophagus carcinoma, and melanoma. We present a first study on the expression and function of Tspan8 in breast cancer. Tspan8 protein was present in the majority of human primary breast cancer lesions and metastases in the brain, bone, lung, and liver. In a syngeneic rat breast cancer model, Tspan8+ tumours formed multiple liver and spleen metastases, while Tspan8- tumours exhibited a significantly diminished ability to metastasise, indicating a role of Tspan8 in metastases. Addressing the underlying molecular mechanisms, we discovered that Tspan8 can mediate up-regulation of E-cadherin and down-regulation of Twist, p120-catenin, and ß-catenin target genes accompanied by the change of cell phenotype, resembling the mesenchymal-epithelial transition. Furthermore, Tspan8+ cells exhibited enhanced cell-cell adhesion, diminished motility, and decreased sensitivity to irradiation. As a regulator of the content and function of extracellular vesicles (EVs), Tspan8 mediated a several-fold increase in EV number in cell culture and the circulation of tumour-bearing animals. We observed increased protein levels of E-cadherin and p120-catenin in these EVs; furthermore, Tspan8 and p120-catenin were co-immunoprecipitated, indicating that they may interact with each other. Altogether, our findings show the presence of Tspan8 in breast cancer primary lesion and metastases and indicate its role as a regulator of cell behaviour and EV release in breast cancer. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Lobular/metabolismo , Tetraspaninas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Lobular/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares , Feminino , Humanos , Metástase Neoplásica , Ratos , Transdução de Sinais
2.
J Lipid Res ; 57(5): 882-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27015744

RESUMO

Lipoproteins play a key role in the development of CVD, but the dynamics of lipoprotein metabolism are difficult to address experimentally. This article describes a novel two-step combined in vitro and in silico approach that enables the estimation of key reactions in lipoprotein metabolism using just one blood sample. Lipoproteins were isolated by ultracentrifugation from fasting plasma stored at 4°C. Plasma incubated at 37°C is no longer in a steady state, and changes in composition may be determined. From these changes, we estimated rates for reactions like LCAT (56.3 µM/h), ß-LCAT (15.62 µM/h), and cholesteryl ester (CE) transfer protein-mediated flux of CE from HDL to IDL/VLDL (21.5 µM/h) based on data from 15 healthy individuals. In a second step, we estimated LDL's HL activity (3.19 pools/day) and, for the very first time, selective CE efflux from LDL (8.39 µM/h) by relying on the previously derived reaction rates. The estimated metabolic rates were then confirmed in an independent group (n = 10). Although measurement uncertainties do not permit us to estimate parameters in individuals, the novel approach we describe here offers the unique possibility to investigate lipoprotein dynamics in various diseases like atherosclerosis or diabetes.


Assuntos
Lipoproteínas LDL/sangue , Adulto , Algoritmos , Proteínas de Transferência de Ésteres de Colesterol/fisiologia , Simulação por Computador , Esterificação , Feminino , Humanos , Hidrólise , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Fosfatidilcolina-Esterol O-Aciltransferase/fisiologia , Triglicerídeos/fisiologia , Adulto Jovem
3.
BMC Syst Biol ; 13(1): 12, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670016

RESUMO

BACKGROUND: Cholesterylester transfer protein (CETP) modulates the composition of various lipoproteins associated with cardiovascular disease. Despite its central role in lipoprotein metabolism, its mode of action is still not fully understood. Here we present a simple way to estimate CETP-mediated lipid fluxes between different lipoprotein fractions. RESULTS: The model derived adequately describes the observed findings, especially regarding low- and high dense lipoproteins (LDL and HDL), delivering correlation coefficients of R2 = 0.567 (p < 0.001) and R2 = 0.466 (p < 0.001), respectively. These estimated fluxes correlate best among all other measured concentrations and 'lipid per lipoprotein' ratios to the observed fluxes. CONCLUSION: Our model approach is independent of CETP-action's exact mechanistic mode. It is simple and easy to apply, and may be a useful tool in revealing CETP's ambiguous role in lipid metabolism. The model mirrors a diffusion-like exchange of triglycerides between lipoproteins. Cholesteryl ester and triglyceride concentrations measured in HDL, LDL and VLDL are sufficient to apply the model on a plasma sample.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Modelos Biológicos , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Transporte Biológico , Humanos
4.
Thromb Haemost ; 119(8): 1295-1310, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31378855

RESUMO

BACKGROUND: Microvesicles (MVs) are small cell-derived vesicles, which are mainly released by activated cells. They are part of a communication network delivering biomolecules, for example, inflammatory molecules, via the blood circulation to remote cells in the body. Platelet-derived MVs are known to induce vascular inflammation. Research on the mediators and mechanisms of their inflammatory effects has attracted major interest. We hypothesize that specific lipids are the mediators of vascular inflammation caused by platelet-derived MVs. METHODS AND RESULTS: Liquid chromatography electrospray ionization-tandem mass spectrometry was used for lipid profiling of platelet-derived MVs. Lysophosphatidylcholine (LPC) was found to be a major component of platelet-derived MVs. Investigating the direct effects of LPC, we found that it induces platelet activation, spreading, migration and aggregation as well as formation of inflammatory platelet-monocyte aggregates. We show for the first time that platelets express the LPC receptor G2AR, which mediates LPC-induced platelet activation. In a mouse model of atherosclerotic plaque instability/rupture, circulating LPC was detected as a surrogate marker of plaque instability. These findings were confirmed by matrix-assisted laser desorption ionization imaging, which showed that the LPC concentration of human plaques was highest in vulnerable plaque regions. CONCLUSION: LPC is a major component of platelet-derived MVs and via its interaction with G2AR on platelets contributes to platelet activation, spreading, migration and aggregation and ultimately to vascular inflammation. Circulating LPC reports on atherosclerotic plaque instability in mice and is significantly increased in unstable areas of atherosclerotic plaques in both mice and humans, linking LPC to plaque instability.


Assuntos
Aterosclerose/metabolismo , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Lisofosfatidilcolinas/análise , Animais , Movimento Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Inflamação , Lipídeos/química , Espectrometria de Massas , Camundongos , Microscopia de Fluorescência , Monócitos/citologia , Permeabilidade , Placa Aterosclerótica/metabolismo , Ativação Plaquetária , Agregação Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA