Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biophys J ; 121(8): 1502-1511, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35278425

RESUMO

Yfh1 is a yeast protein with the peculiar characteristic to undergo, in the absence of salt, cold denaturation at temperatures above the water freezing point. This feature makes the protein particularly interesting for studies aiming at understanding the rules that determine protein fold stability. Here, we present the phase diagram of Yfh1 unfolding as a function of pressure (0.1-500 MPa) and temperature 278-313 K (5-40°C) both in the absence and in the presence of stabilizers using Trp fluorescence as a monitor. The protein showed a remarkable sensitivity to pressure: at 293 K, pressures around 10 MPa are sufficient to cause 50% of unfolding. Higher pressures were required for the unfolding of the protein in the presence of stabilizers. The phase diagram on the pressure-temperature plane together with a critical comparison between our results and those found in the literature allowed us to draw conclusions on the mechanism of the unfolding process under different environmental conditions.


Assuntos
Temperatura Alta , Saccharomyces cerevisiae , Temperatura Baixa , Proteínas de Ligação ao Ferro , Desnaturação Proteica , Dobramento de Proteína , Termodinâmica , Frataxina
2.
J Am Chem Soc ; 144(16): 7198-7207, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35427450

RESUMO

Although cold denaturation is a fundamental phenomenon common to all proteins, it can only be observed in a handful of cases where it occurs at temperatures above the freezing point of water. Understanding the mechanisms that determine cold denaturation and the rules that permit its observation is an important challenge. A way to approach them is to be able to induce cold denaturation in an otherwise stable protein by means of mutations. Here, we studied CyaY, a relatively stable bacterial protein with no detectable cold denaturation and a high melting temperature of 54 °C. We have characterized for years the yeast orthologue of CyaY, Yfh1, a protein that undergoes cold and heat denaturation at 5 and 35 °C, respectively. We demonstrate that, by transferring to CyaY the lessons learnt from Yfh1, we can induce cold denaturation by introducing a restricted number of carefully designed mutations aimed at destabilizing the overall fold and inducing electrostatic frustration. We used molecular dynamics simulations to rationalize our findings and demonstrate the individual effects observed experimentally with the various mutants. Our results constitute the first example of rationally designed cold denaturation and demonstrate the importance of electrostatic frustration on the mechanism of cold denaturation.


Assuntos
Temperatura Baixa , Proteínas , Temperatura Alta , Simulação de Dinâmica Molecular , Desnaturação Proteica , Termodinâmica
3.
Hum Mutat ; 40(9): 1400-1413, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31074541

RESUMO

Human frataxin is an iron-binding protein involved in the mitochondrial iron-sulfur (Fe-S) clusters assembly, a process fundamental for the functional activity of mitochondrial proteins. Decreased level of frataxin expression is associated with the neurodegenerative disease Friedreich ataxia. Defective function of frataxin may cause defects in mitochondria, leading to increased tumorigenesis. Tumor-initiating cells show higher iron uptake, a decrease in iron storage and a reduced Fe-S clusters synthesis and utilization. In this study, we selected, from COSMIC database, the somatic human frataxin missense variants found in cancer tissues p.D104G, p.A107V, p.F109L, p.Y123S, p.S161I, p.W173C, p.S181F, and p.S202F to analyze the effect of the single amino acid substitutions on frataxin structure, function, and stability. The spectral properties, the thermodynamic and the kinetic stability, as well as the molecular dynamics of the frataxin missense variants found in cancer tissues point to local changes confined to the environment of the mutated residues. The global fold of the variants is not altered by the amino acid substitutions; however, some of the variants show a decreased stability and a decreased functional activity in comparison with that of the wild-type protein.


Assuntos
Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Mutação de Sentido Incorreto , Neoplasias/genética , Substituição de Aminoácidos , Bases de Dados Genéticas , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Estabilidade Proteica , Frataxina
4.
Biomedicines ; 10(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35203634

RESUMO

Protein mutations may lead to pathologies by causing protein misfunction or propensity to degradation. For this reason, several studies have been performed over the years to determine the capability of proteins to retain their native conformation under stress condition as well as factors to explain protein stabilization and the mechanisms behind unfolding. In this review, we explore the paradigmatic example of frataxin, an iron binding protein involved in Fe-S cluster biogenesis, and whose impairment causes a neurodegenerative disease called Friedreich's Ataxia (FRDA). We summarize what is known about most common point mutations identified so far in heterozygous FRDA patients, their effects on frataxin structure and function and the consequences of its binding with partners.

5.
Chem Sci ; 14(1): 78-95, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36605734

RESUMO

Iron-sulfur (Fe-S) clusters are cofactors essential for life. Though the proteins that function in the assembly of Fe-S clusters are well known, details of the molecular mechanism are less well established. The Isc (iron-sulfur cluster) biogenesis apparatus is widespread in bacteria and is the closest homologue to the human system. Mutations in certain components of the human system lead to disease, and so further studies of this system could be important for developing strategies for medical treatments. We have studied two core components of the Isc biogenesis system: IscS, a cysteine desulfurase; and IscU, a scaffold protein on which clusters are built before subsequent transfer onto recipient apo-proteins. Fe2+-binding, sulfur transfer, and formation of a [2Fe-2S] was followed by a range of techniques, including time-resolved mass spectrometry, and intermediate and product species were unambiguously identified through isotopic substitution experiments using 57Fe and 34S. Under cluster synthesis conditions, sulfur adducts and the [2Fe-2S] cluster product readily accumulated on IscU, but iron adducts (other than the cluster itself) were not observed at physiologically relevant Fe2+ concentrations. Our data indicate that either Fe2+ or sulfur transfer can occur first, but that the transfer of sulfane sulfur (S0) to IscU must occur first if Zn2+ is bound to IscU, suggesting that it is the key step that initiates cluster assembly. Following this, [2Fe-2S] cluster formation is a largely concerted reaction once Fe2+ is introduced.

6.
Methods Mol Biol ; 2353: 79-95, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34292545

RESUMO

Iron-sulfur (Fe-S) clusters are key cofactors for proteins involved in essential cellular processes such as DNA replication and repair, ribosome biogenesis, tRNA thio-modification, and co-enzyme synthesis. Fe-S clusters can assemble spontaneously from inorganic compounds, but their biogenesis requires dedicated machineries to circumvent the toxic nature of iron and sulfur. To address how these machines work, different laboratories have applied various biochemical and biophysical approaches, both in vivo and in vitro. Fe-S cluster enzymatic and chemical formation in vitro is the most efficient way to follow Fe-S cluster biogenesis in a controlled environment and investigate each component of the machinery at the molecular level. In this review, we detail and discuss an efficient protocol for an in vitro Fe-S cluster enzymatic and chemical formation, which we successfully developed to study Fe-S cluster formation. We underline the applications of this approach to the study of an essential biological system.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Enxofre/metabolismo
7.
Commun Chem ; 4(1)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35243007

RESUMO

Most techniques allow detection of protein unfolding either by following the behaviour of single reporters or as an averaged all-or-none process. We recently added 2D NMR spectroscopy to the well-established techniques able to obtain information on the process of unfolding using resonances of residues in the hydrophobic core of a protein. Here, we questioned whether an analysis of the individual stability curves from each resonance could provide additional site-specific information. We used the Yfh1 protein that has the unique feature to undergo both cold and heat denaturation at temperatures above water freezing at low ionic strength. We show that stability curves inconsistent with the average NMR curve from hydrophobic core residues mainly comprise exposed outliers that do nevertheless provide precious information. By monitoring both cold and heat denaturation of individual residues we gain knowledge on the process of cold denaturation and convincingly demonstrate that the two unfolding processes are intrinsically different.

8.
Front Mol Biosci ; 8: 773234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35237655

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated to deteriorating motor and cognitive functions, and short survival. The disease is caused by neuronal death which results in progressive muscle wasting and weakness, ultimately leading to lethal respiratory failure. The misbehaviour of a specific protein, TDP-43, which aggregates and becomes toxic in ALS patient's neurons, is supposed to be one of the causes. TDP-43 is a DNA/RNA-binding protein involved in several functions related to nucleic acid metabolism. Sequestration of TDP-43 aggregates is a possible therapeutic strategy that could alleviate or block pathology. Here, we describe the selection and characterization of a new intracellular antibody (intrabody) against TDP-43 from a llama nanobody library. The structure of the selected intrabody was predicted in silico and the model was used to suggest mutations that enabled to improve its expression yield, facilitating its experimental validation. We showed how coupling experimental methodologies with in silico design may allow us to obtain an antibody able to recognize the RNA binding regions of TDP-43. Our findings illustrate a strategy for the mitigation of TDP-43 proteinopathy in ALS and provide a potential new tool for diagnostics.

9.
Biomol NMR Assign ; 15(2): 235-241, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33755914

RESUMO

As part of an International consortium aiming at the characterization by NMR of the proteins of the SARS-CoV-2 virus, we have obtained the virtually complete assignment of the backbone atoms of the non-structural protein nsp9. This small (12 kDa) protein is encoded by ORF1a, binds to RNA and seems to be essential for viral RNA synthesis. The crystal structures of the SARS-CoV-2 protein and other homologues suggest that the protein is dimeric as also confirmed by analytical ultracentrifugation and dynamic light scattering. Our data constitute the prerequisite for further NMR-based characterization, and provide the starting point for the identification of small molecule lead compounds that could interfere with RNA binding and prevent viral replication.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas de Ligação a RNA/química , Proteínas não Estruturais Virais/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína
10.
FEBS J ; 287(12): 2428-2439, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142206

RESUMO

Native mass spectrometry is an emerging technique in biology that gives the possibility to study noncovalently bound complexes with high sensitivity and accuracy. It thus allows the characterization of macromolecular assemblies, assessing their mass and stoichiometries and mapping the interacting surfaces. In this review, we discuss the application of native mass spectrometry to dynamic molecular machines based on multiple weak interactions. In the study of these machines, it is crucial to understand which and under which conditions various complexes form at any time point. We focus on the specific example of the iron-sulfur cluster biogenesis machine because this is an archetype of a dynamic machine that requires very specific and demanding experimental conditions, such as anaerobicity and the need of retaining the fold of marginally folded proteins. We describe the advantages, challenges and current limitations of the technique by providing examples from our own experience and suggesting possible future solutions.


Assuntos
Proteínas de Escherichia coli/análise , Proteínas Ferro-Enxofre/análise , Espectrometria de Massas , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Dobramento de Proteína
11.
Commun Chem ; 3: 100, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-33718626

RESUMO

A topic that has attracted considerable interest in recent years is the possibility to perform thermodynamic studies of proteins directly in-cell or in complex environments which mimic the cellular interior. Nuclear magnetic resonance (NMR) could be an attractive technique for these studies but its applicability has so far been limited by technical issues. Here, we demonstrate that 2D NMR methods can be successfully applied to measure thermodynamic parameters provided that a suitable choice of the residues used for the calculation is made. We propose a new parameter, named RAD, which reflects the level of protection of a specific amide proton in the protein core and can guide through the selection of the resonances. We also suggest a way to calibrate the volumes to become independent of technical limitations. The methodology we propose leads to stability curves comparable to that calculated from CD data and provides a new tool for thermodynamic measurements in complex environments.

12.
Front Mol Biosci ; 7: 104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582762

RESUMO

Epidemiological evidence shows an increased risk for developing Alzheimer's disease in people affected by diabetes, a pathology associated with increased hyperglycemia. A potential factor that could explain this link could be the role that sugars may play in both diseases under the form of glycation. Contrary to glycosylation, glycation is an enzyme-free reaction that leads to formation of toxic advanced glycation end-products (AGEs). In diabetes, the islet amyloid polypeptide (IAPP or amylin) is found to be heavily glycated and to form toxic amyloid-like aggregates, similar to those observed for the Aß peptides, often also heavily glycated, observed in Alzheimer patients. Here, we studied the effects of glycation on the structure and aggregation properties of IAPP with several biophysical techniques ranging from fluorescence to circular dichroism, mass spectrometry and atomic force microscopy. We demonstrate that glycation occurs exclusively on the N-terminal lysine leaving the only arginine (Arg11) unmodified. At variance with recent studies, we show that the dynamical interplay between glycation and aggregation affects the structure of the peptide, slows down the aggregation process and influences the aggregate morphology.

13.
FEBS J ; 286(3): 495-506, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30636112

RESUMO

Frataxins form an interesting family of iron-binding proteins with an almost unique fold and are highly conserved from bacteria to primates. They have a pivotal role in iron-sulfur cluster biogenesis as regulators of the rates of cluster formation, as it is testified by the fact that frataxin absence is incompatible with life and reduced levels of the protein lead to the recessive neurodegenerative disease Friedreich's ataxia. Despite its importance, the structure of frataxin has been solved only from relatively few species. Here, we discuss the X-ray structure of frataxin from the thermophilic fungus Chaetomium thermophilum, and the characterization of its interactions and dynamics in solution. We show that this eukaryotic frataxin has an unusual variation in the classical frataxin fold: the last helix is shorter than in other frataxins which results in a less symmetrical and compact structure. The stability of this protein is comparable to that of human frataxin, currently the most stable among the frataxin orthologues. We also characterized the iron-binding mode of Ct frataxin and demonstrated that it binds it through a semiconserved negatively charged ridge on the first helix and beta-strand. Moreover, this frataxin is also able to bind the bacterial ortholog of the desulfurase, which is central in iron-sulfur cluster synthesis, and act as its inhibitor.


Assuntos
Liases de Carbono-Enxofre/química , Chaetomium/química , Proteínas de Escherichia coli/química , Proteínas Fúngicas/química , Proteínas de Ligação ao Ferro/química , Proteínas Ferro-Enxofre/química , Ferro/química , Sequência de Aminoácidos , Sítios de Ligação , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Chaetomium/genética , Chaetomium/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Eletricidade Estática , Termodinâmica , Frataxina
14.
FEBS Lett ; 592(24): 4011-4019, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30194723

RESUMO

Iron-sulfur cluster biogenesis is a complex process mediated by numerous proteins among which two from bacteria chaperones, called HscB and HscA in bacteria. They are highly conserved up to eukaryotes and homologous to DnaJ and DnaK, respectively, but with specific differences. As compared with other chaperones, HscB and HscA have escaped attention and relatively little is known about their functions. After briefly introducing the various chaperone families, we reviewed here the current structural and functional knowledge HscA and HscB and on their role in cluster formation. We critically evaluated the literature and highlighted the weak aspects which will require more attention in the future. We sincerely hope that this study will inspire new interest on this important and interesting system.


Assuntos
Proteínas de Bactérias/genética , Proteínas Ferro-Enxofre/genética , Chaperonas Moleculares/genética , Família Multigênica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Domínios Proteicos
16.
Front Mol Biosci ; 4: 97, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29457004

RESUMO

IscX (or YfhJ) is a protein of unknown function which takes part in the iron-sulfur cluster assembly machinery, a highly specialized and essential metabolic pathway. IscX binds to iron with low affinity and interacts with IscS, the desulfurase central to cluster assembly. Previous studies have suggested a competition between IscX and CyaY, the bacterial ortholog of frataxin, for the same binding surface of IscS. This competition could suggest a link between the two proteins with a functional significance. Using a hybrid approach based on nuclear magnetic resonance, small angle scattering and biochemical methods, we show here that IscX is a modulator of the inhibitory properties of CyaY: by competing for the same site on IscS, the presence of IscX rescues the rates of enzymatic cluster formation which are inhibited by CyaY. The effect is stronger at low iron concentrations, whereas it becomes negligible at high iron concentrations. These results strongly suggest the mechanism of the dual regulation of iron sulfur cluster assembly under the control of iron as the effector.

17.
Front Mol Biosci ; 3: 48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27730125

RESUMO

Iron sulfur clusters are essential universal prosthetic groups which can be formed inorganically but, in biology, are bound to proteins and produced enzymatically. Most of the components of the machine that produces the clusters are conserved throughout evolution. In bacteria, they are encoded in the isc operon. Previous reports provide information on the role of specific components but a clear picture of how the whole machine works is still missing. We have carried out a study of the effects of the co-chaperone HscB from the model system E. coli. We document a previously undetected weak interaction between the chaperone HscB and the desulfurase IscS, one of the two main players of the machine. The binding site involves a region of HscB in the longer stem of the approximately L-shaped molecule, whereas the interacting surface of IscS overlaps with the surface previously involved in binding other proteins, such as ferredoxin and frataxin. Our findings provide an entirely new perspective to our comprehension of the role of HscB and propose this protein as a component of the IscS complex.

18.
Front Mol Neurosci ; 8: 66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635519

RESUMO

Reduced levels of frataxin, an essential mitochondrial protein involved in the regulation of iron-sulfur cluster biogenesis, are responsible for the recessive neurodegenerative Friedreich Ataxia (FRDA). Expansion of a GAA triplet in the first intron of the FRDA is essential for disease development which causes partial silencing of frataxin. In the vast majority of cases, patients are homozygotes for the expansion, but a small number of FRDA patients are heterozygotes for expansion and point mutations in the frataxin coding frame. In this study, we analyze the effects of a point mutation G137V. The patient P94-2, with a history of alcohol and drug abuse, showed a FRDA onset at the border between the classic and late onset phenotype. We applied a combination of biophysical and biochemical methods to characterize its effects on the structure, folding and activity of frataxin. Our study reveals no impairment of the structure or activity of the protein but a reduced folding stability. We suggest that the mutation causes misfolding of the native chain with consequent reduction of the protein concentration in the patient and discuss the possible mechanism of disease.

19.
Protein Sci ; 23(9): 1208-19, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24917298

RESUMO

Understanding the factors that determine protein stability is interesting because it directly reflects the evolutionary pressure coming from function and environment. Here, we have combined experimental and computational methods to study the stability of IscU, a bacterial scaffold protein highly conserved in most organisms and an essential component of the iron-sulfur cluster biogenesis pathway. We demonstrate that the effect of zinc and its consequence strongly depend on the sample history. IscU is a marginally stable protein at low ionic strength to the point that undergoes cold denaturation at around -8°C with a corresponding dramatic decrease of enthalpy, which is consistent with the fluxional nature of the protein. Presence of constitutively bound zinc appreciably stabilizes the IscU fold, whereas it may cause protein aggregation when zinc is added back posthumously. We discuss how zinc coordination can be achieved by different side chains spatially available and all competent for tetrahedral coordination. The individual absence of some of these residues can be largely compensated by small local rearrangements of the others. We discuss the potential importance of our findings in vitro for the function in vivo of the protein.


Assuntos
Proteínas de Escherichia coli/química , Proteínas Ferro-Enxofre/química , Zinco/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Concentração Osmolar , Agregados Proteicos , Estabilidade Proteica , Termodinâmica , Zinco/metabolismo
20.
PLoS One ; 9(5): e95801, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24802807

RESUMO

Frataxins are a family of metal binding proteins associated with the human Friedreich's ataxia disease. Here, we have addressed the effect of non-specifically binding salts on the stability of the yeast ortholog Yfh1. This protein is a sensitive model since its stability is strongly dependent on the environment, in particular on ionic strength. Yfh1 also offers the unique advantage that its cold denaturation can be observed above the freezing point of water, thus allowing the facile construction of the whole protein stability curve and hence the measurement of accurate thermodynamic parameters for unfolding. We systematically measured the effect of several cations and, as a control, of different anions. We show that, while strongly susceptible to ionic strength, as it would be in the cellular environment, Yfh1 stability is sensitive not only to divalent cations, which bind specifically, but also to monovalent cations. We pinpoint the structural bases of the stability and hypothesize that the destabilization induced by an unusual cluster of negatively charged residues favours the entrance of water molecules into the hydrophobic core, consistent with the generally accepted mechanism of cold denaturation.


Assuntos
Proteínas de Ligação ao Ferro/química , Desnaturação Proteica , Sequência de Aminoácidos , Temperatura Baixa , Dados de Sequência Molecular , Concentração Osmolar , Estabilidade Proteica , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA