Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(2): 159-164, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34667308

RESUMO

SARS-CoV-2 infections display tremendous interindividual variability, ranging from asymptomatic infections to life-threatening disease. Inborn errors of, and autoantibodies directed against, type I interferons (IFNs) account for about 20% of critical COVID-19 cases among SARS-CoV-2-infected individuals. By contrast, the genetic and immunological determinants of resistance to infection per se remain unknown. Following the discovery that autosomal recessive deficiency in the DARC chemokine receptor confers resistance to Plasmodium vivax, autosomal recessive deficiencies of chemokine receptor 5 (CCR5) and the enzyme FUT2 were shown to underlie resistance to HIV-1 and noroviruses, respectively. Along the same lines, we propose a strategy for identifying, recruiting, and genetically analyzing individuals who are naturally resistant to SARS-CoV-2 infection.


Assuntos
COVID-19/genética , Resistência à Doença/genética , Predisposição Genética para Doença , SARS-CoV-2/patogenicidade , Animais , COVID-19/imunologia , COVID-19/virologia , Heterogeneidade Genética , Interações Hospedeiro-Patógeno , Humanos , Fenótipo , Fatores de Proteção , Medição de Risco , Fatores de Risco , SARS-CoV-2/imunologia
3.
Brain ; 147(6): 2069-2084, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38763511

RESUMO

The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Dinaminas , Dinâmica Mitocondrial , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patologia , Adrenoleucodistrofia/genética , Animais , Dinâmica Mitocondrial/fisiologia , Humanos , Camundongos , Dinaminas/metabolismo , Dinaminas/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Caenorhabditis elegans , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Axônios/patologia , Axônios/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Masculino , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Tratos Piramidais/patologia , Tratos Piramidais/metabolismo , Fragmentos de Peptídeos , GTP Fosfo-Hidrolases
4.
Am J Hum Genet ; 108(11): 2195-2204, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34715011

RESUMO

Human mitochondrial RNase P (mt-RNase P) is responsible for 5' end processing of mitochondrial precursor tRNAs, a vital step in mitochondrial RNA maturation, and is comprised of three protein subunits: TRMT10C, SDR5C1 (HSD10), and PRORP. Pathogenic variants in TRMT10C and SDR5C1 are associated with distinct recessive or x-linked infantile onset disorders, resulting from defects in mitochondrial RNA processing. We report four unrelated families with multisystem disease associated with bi-allelic variants in PRORP, the metallonuclease subunit of mt-RNase P. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. Fibroblasts from affected individuals in two families demonstrated decreased steady state levels of PRORP, an accumulation of unprocessed mitochondrial transcripts, and decreased steady state levels of mitochondrial-encoded proteins, which were rescued by introduction of the wild-type PRORP cDNA. In mt-tRNA processing assays performed with recombinant mt-RNase P proteins, the disease-associated variants resulted in diminished mitochondrial tRNA processing. Identification of disease-causing variants in PRORP indicates that pathogenic variants in all three subunits of mt-RNase P can cause mitochondrial dysfunction, each with distinct pleiotropic clinical presentations.


Assuntos
Alelos , Pleiotropia Genética , Mitocôndrias/enzimologia , RNA Mitocondrial/genética , RNA de Transferência/genética , Ribonuclease P/genética , Adulto , Feminino , Humanos , Masculino , Linhagem
5.
Mol Genet Metab ; 139(3): 107604, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236006

RESUMO

Peroxisomal disorders are heterogeneous in nature, with phenotypic overlap that is indistinguishable without molecular testing. Newborn screening and gene sequencing for a panel of genes implicated in peroxisomal diseases are critical tools for the early and accurate detection of these disorders. It is therefore essential to evaluate the clinical validity of the genes included in sequencing panels for peroxisomal disorders. The Peroxisomal Gene Curation Expert Panel (GCEP) assessed genes frequently included on clinical peroxisomal testing panels using the Clinical Genome Resource (ClinGen) gene-disease validity curation framework and classified gene-disease relationships as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. Subsequent to gene curation, the GCEP made recommendations to update the disease nomenclature and ontology in the Monarch Disease Ontology (Mondo) database. Thirty-six genes were assessed for the strength of evidence supporting their role in peroxisomal disease, leading to 36 gene-disease relationships, after two genes were removed for their lack of a role in peroxisomal disease and two genes were curated for two different disease entities each. Of these, 23 were classified as Definitive (64%), one as Strong (3%), eight as Moderate (23%), two as Limited (5%), and two as No known disease relationship (5%). No contradictory evidence was found to classify any relationships as Disputed or Refuted. The gene-disease relationship curations are publicly available on the ClinGen website (https://clinicalgenome.org/affiliation/40049/). The changes to peroxisomal disease nomenclature are displayed on the Mondo website (http://purl.obolibrary.org/obo/MONDO_0019053). The Peroxisomal GCEP-curated gene-disease relationships will inform clinical and laboratory diagnostics and enhance molecular testing and reporting. As new data will emerge, the gene-disease classifications asserted by the Peroxisomal GCEP will be re-evaluated periodically.


Assuntos
Técnicas de Diagnóstico Molecular , Triagem Neonatal , Recém-Nascido , Humanos , Bases de Dados Factuais , Testes Genéticos
6.
Eur J Neurol ; 30(12): 3828-3833, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37578187

RESUMO

BACKGROUND AND PURPOSE: Dominantly inherited GAA repeat expansions in the fibroblast growth factor 14 (FGF14) gene have recently been shown to cause spinocerebellar ataxia 27B (SCA27B). We aimed to study the frequency and phenotype of SCA27B in a cohort of patients with unsolved late-onset cerebellar ataxia (LOCA). We also assessed the frequency of SCA27B relative to other genetically defined LOCAs. METHODS: We recruited a consecutive series of 107 patients with LOCA, of whom 64 remained genetically undiagnosed. We screened these 64 patients for the FGF14 GAA repeat expansion. We next analysed the frequency of SCA27B relative to other genetically defined forms of LOCA in the cohort of 107 patients. RESULTS: Eighteen of 64 patients (28%) carried an FGF14 (GAA)≥250 expansion. The median (range) age at onset was 62.5 (39-72) years. The most common clinical features included gait ataxia (100%) and mild cerebellar dysarthria (67%). In addition, episodic symptoms and downbeat nystagmus were present in 39% (7/18) and 37% (6/16) of patients, respectively. SCA27B was the most common cause of LOCA in our cohort (17%, 18/107). Among patients with genetically defined LOCA, SCA27B was the main cause of pure ataxia, RFC1-related disease of ataxia with neuropathy, and SPG7 of ataxia with spasticity. CONCLUSION: We showed that SCA27B is the most common cause of LOCA in our cohort. Our results support the use of FGF14 GAA repeat expansion screening as a first-tier genetic test in patients with LOCA.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Pessoa de Meia-Idade , Idoso , Ataxia Cerebelar/genética , Ataxia/genética , Ataxias Espinocerebelares/genética , Cerebelo , Fenótipo
7.
Brain ; 145(10): 3711-3722, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35325049

RESUMO

Sulphated proteoglycans are essential in skeletal and brain development. Recently, pathogenic variants in genes encoding proteins involved in the proteoglycan biosynthesis have been identified in a range of chondrodysplasia associated with intellectual disability. Nevertheless, several patients remain with unidentified molecular basis. This study aimed to contribute to the deciphering of new molecular bases in patients with chondrodysplasia and neurodevelopmental disease. Exome sequencing was performed to identify pathogenic variants in patients presenting with chondrodysplasia and intellectual disability. The pathogenic effects of the potentially causative variants were analysed by functional studies. We identified homozygous variants (c.1218_1220del and c.1224_1225del) in SLC35B2 in two patients with pre- and postnatal growth retardation, scoliosis, severe motor and intellectual disabilities and hypomyelinating leukodystrophy. By functional analyses, we showed that the variants affect SLC35B2 mRNA expression and protein subcellular localization leading to a functional impairment of the protein. Consistent with those results, we detected proteoglycan sulphation impairment in SLC35B2 patient fibroblasts and serum. Our data support that SLC35B2 functional impairment causes a novel syndromic chondrodysplasia with hypomyelinating leukodystrophy, most likely through a proteoglycan sulphation defect. This is the first time that SLC35B2 variants are associated with bone and brain development in human.


Assuntos
Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Homozigoto , Sequenciamento do Exoma , Proteoglicanas/genética , RNA Mensageiro , Transportadores de Sulfato/genética
8.
J Med Genet ; 59(12): 1227-1233, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36041817

RESUMO

BACKGROUND: Aminoacyl-tRNA synthetases (ARS) are key enzymes catalysing the first reactions in protein synthesis, with increasingly recognised pleiotropic roles in tumourgenesis, angiogenesis, immune response and lifespan. Germline mutations in several ARS genes have been associated with both recessive and dominant neurological diseases. Recently, patients affected with microcephaly, intellectual disability and ataxia harbouring biallelic variants in the seryl-tRNA synthetase encoded by seryl-tRNA synthetase 1 (SARS1) were reported. METHODS: We used exome sequencing to identify the causal variant in a patient affected by complex spastic paraplegia with ataxia, intellectual disability, developmental delay and seizures, but without microcephaly. Complementation and serylation assays using patient's fibroblasts and an Saccharomyces cerevisiae model were performed to examine this variant's pathogenicity. RESULTS: A de novo splice site deletion in SARS1 was identified in our patient, resulting in a 5-amino acid in-frame insertion near its active site. Complementation assays in S. cerevisiae and serylation assays in both yeast strains and patient fibroblasts proved a loss-of-function, dominant negative effect. Fibroblasts showed an abnormal cell shape, arrested division and increased beta-galactosidase staining along with a senescence-associated secretory phenotype (raised interleukin-6, p21, p16 and p53 levels). CONCLUSION: We refine the phenotypic spectrum and modes of inheritance of a newly described, ultrarare neurodevelopmental disorder, while unveiling the role of SARS1 as a regulator of cell growth, division and senescence.


Assuntos
Aminoacil-tRNA Sintetases , Deficiência Intelectual , Microcefalia , Serina-tRNA Ligase , Humanos , Aminoacil-tRNA Sintetases/genética , Ataxia , Senescência Celular/genética , Deficiência Intelectual/genética , Ligases , Microcefalia/genética , Paraplegia/genética , Saccharomyces cerevisiae/genética , Serina-tRNA Ligase/química , Serina-tRNA Ligase/metabolismo
9.
Neuropathol Appl Neurobiol ; 48(1): e12747, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34237158

RESUMO

AIMS: Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor-interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1- mouse model of X-linked adrenoleukodystrophy (X-ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation. METHODS AND RESULTS: We provide evidence that RIP140 is modulated through a redox-dependent mechanism driven by very long-chain fatty acids (VLCFAs), the levels of which are increased in X-ALD. Genetic inactivation of RIP140 prevented mitochondrial depletion and dysfunction, bioenergetic failure, inflammatory dysregulation, axonal degeneration and associated locomotor disabilities in vivo in X-ALD mouse models. CONCLUSIONS: Together, these findings show that aberrant overactivation of RIP140 promotes neurodegeneration in X-ALD, underscoring its potential as a therapeutic target for X-ALD and other neurodegenerative disorders that present with metabolic and inflammatory dyshomeostasis.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/uso terapêutico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Modelos Animais de Doenças , Homeostase , Camundongos , Mitocôndrias/metabolismo , Proteína 1 de Interação com Receptor Nuclear
10.
Acta Neuropathol ; 144(2): 241-258, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35778568

RESUMO

Aberrant endocannabinoid signaling accompanies several neurodegenerative disorders, including multiple sclerosis. Here, we report altered endocannabinoid signaling in X-linked adrenoleukodystrophy (X-ALD), a rare neurometabolic demyelinating syndrome caused by malfunction of the peroxisomal ABCD1 transporter, resulting in the accumulation of very long-chain fatty acids (VLCFAs). We found abnormal levels of cannabinoid receptor 2 (CB2r) and related endocannabinoid enzymes in the brain and peripheral blood mononuclear cells (PBMCs) of X-ALD patients and in the spinal cord of a murine model of X-ALD. Preclinical treatment with a selective agonist of CB2r (JWH133) halted axonal degeneration and associated locomotor deficits, along with normalization of microgliosis. Moreover, the drug improved the main metabolic disturbances underlying this model, particularly in redox and lipid homeostatic pathways, including increased lipid droplets in motor neurons, through the modulation of the GSK-3ß/NRF2 axis. JWH133 inhibited Reactive Oxygen Species elicited by excess VLCFAs in primary microglial cultures of Abcd1-null mice. Furthermore, we uncovered intertwined redox and CB2r signaling in the murine spinal cords and in patient PBMC samples obtained from a phase II clinical trial with antioxidants (NCT01495260). These findings highlight CB2r signaling as a potential therapeutic target for X-ALD and perhaps other neurodegenerative disorders that present with dysregulated redox and lipid homeostasis.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia/tratamento farmacológico , Animais , Ensaios Clínicos Fase II como Assunto , Endocanabinoides/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/uso terapêutico
11.
Brain ; 144(9): 2659-2669, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34415322

RESUMO

Phosphoinositides are lipids that play a critical role in processes such as cellular signalling, ion channel activity and membrane trafficking. When mutated, several genes that encode proteins that participate in the metabolism of these lipids give rise to neurological or developmental phenotypes. PI4KA is a phosphoinositide kinase that is highly expressed in the brain and is essential for life. Here we used whole exome or genome sequencing to identify 10 unrelated patients harbouring biallelic variants in PI4KA that caused a spectrum of conditions ranging from severe global neurodevelopmental delay with hypomyelination and developmental brain abnormalities to pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Functional analyses by western blotting and immunofluorescence showed decreased PI4KA levels in the patients' fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells. In conclusion, we report a novel severe metabolic disorder caused by PI4KA malfunction, highlighting the importance of phosphoinositide signalling in human brain development and the myelin sheath.


Assuntos
Alelos , Variação Genética/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Antígenos de Histocompatibilidade Menor/genética , Transtornos do Neurodesenvolvimento/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Leucócitos Mononucleares/fisiologia , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Linhagem
12.
Am J Hum Genet ; 102(5): 744-759, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656859

RESUMO

RORα, the RAR-related orphan nuclear receptor alpha, is essential for cerebellar development. The spontaneous mutant mouse staggerer, with an ataxic gait caused by neurodegeneration of cerebellar Purkinje cells, was discovered two decades ago to result from homozygous intragenic Rora deletions. However, RORA mutations were hitherto undocumented in humans. Through a multi-centric collaboration, we identified three copy-number variant deletions (two de novo and one dominantly inherited in three generations), one de novo disrupting duplication, and nine de novo point mutations (three truncating, one canonical splice site, and five missense mutations) involving RORA in 16 individuals from 13 families with variable neurodevelopmental delay and intellectual disability (ID)-associated autistic features, cerebellar ataxia, and epilepsy. Consistent with the human and mouse data, disruption of the D. rerio ortholog, roraa, causes significant reduction in the size of the developing cerebellum. Systematic in vivo complementation studies showed that, whereas wild-type human RORA mRNA could complement the cerebellar pathology, missense variants had two distinct pathogenic mechanisms of either haploinsufficiency or a dominant toxic effect according to their localization in the ligand-binding or DNA-binding domains, respectively. This dichotomous direction of effect is likely relevant to the phenotype in humans: individuals with loss-of-function variants leading to haploinsufficiency show ID with autistic features, while individuals with de novo dominant toxic variants present with ID, ataxia, and cerebellar atrophy. Our combined genetic and functional data highlight the complex mutational landscape at the human RORA locus and suggest that dual mutational effects likely determine phenotypic outcome.


Assuntos
Transtorno Autístico/genética , Ataxia Cerebelar/genética , Genes Dominantes , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Adolescente , Adulto , Idoso de 80 Anos ou mais , Alelos , Animais , Transtorno Autístico/complicações , Encéfalo/patologia , Ataxia Cerebelar/complicações , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Feminino , Teste de Complementação Genética , Humanos , Deficiência Intelectual/complicações , Larva/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Síndrome , Peixe-Zebra/genética
13.
J Clin Immunol ; 41(5): 914-922, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33851338

RESUMO

BACKGROUND: In a recent study, autoantibodies neutralizing type I interferons (IFNs) were present in at least 10% of cases of critical COVID-19 pneumonia. These autoantibodies neutralized most type I IFNs but rarely IFN-beta. OBJECTIVES: We aimed to define the prevalence of autoantibodies neutralizing type I IFN in a cohort of patients with severe COVID-19 pneumonia treated with IFN-beta-1b during hospitalization and to analyze their impact on various clinical variables and outcomes. METHODS: We analyzed stored serum/plasma samples and clinical data of COVID-19 patients treated subcutaneously with IFN-beta-1b from March to May 2020, at the Infanta Leonor University Hospital in Madrid, Spain. RESULTS: The cohort comprised 47 COVID-19 patients with severe pneumonia, 16 of whom (34%) had a critical progression requiring ICU admission. The median age was 71 years, with 28 men (58.6%). Type I IFN-alpha- and omega-neutralizing autoantibodies were found in 5 of 47 patients with severe pneumonia or critical disease (10.6%), while they were not found in any of the 118 asymptomatic controls (p = 0.0016). The autoantibodies did not neutralize IFN-beta. No demographic, comorbidity, or clinical differences were seen between individuals with or without autoantibodies. We found a significant correlation between the presence of neutralizing autoantibodies and higher C-reactive protein levels (p = 5.10e-03) and lower lymphocyte counts (p = 1.80e-02). No significant association with response to IFN-beta-1b therapy (p = 0.34) was found. Survival analysis suggested that neutralizing autoantibodies may increase the risk of death (4/5, 80% vs 12/42, 28.5%). CONCLUSION: Autoantibodies neutralizing type I IFN underlie severe/critical COVID-19 stages in at least 10% of cases, correlate with increased C-RP and lower lymphocyte counts, and confer a trend towards increased risk of death. Subcutaneous IFN-beta treatment of hospitalized patients did not seem to improve clinical outcome. Studies of earlier, ambulatory IFN-beta treatment are warranted.


Assuntos
Anticorpos Neutralizantes/sangue , Autoanticorpos/sangue , COVID-19/imunologia , Interferon Tipo I/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/análise , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade
14.
Neuropathol Appl Neurobiol ; 47(4): 544-563, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33332650

RESUMO

AIM: Peroxisomes play a key role in lipid metabolism, and peroxisome defects have been associated with neurodegenerative diseases such as X-adrenoleukodystrophy and Alzheimer's disease. This study aims to elucidate the contribution of peroxisomes in lipid alterations of area 8 of the frontal cortex in the spectrum of TDP43-proteinopathies. Cases of frontotemporal lobar degeneration-TDP43 (FTLD-TDP), manifested as sporadic (sFTLD-TDP) or linked to mutations in various genes including expansions of the non-coding region of C9ORF72 (c9FTLD), and of sporadic amyotrophic lateral sclerosis (sALS) as the most common TDP43 proteinopathies, were analysed. METHODS: We used transcriptomics and lipidomics methods to define the steady-state levels of gene expression and lipid profiles. RESULTS: Our results show alterations in gene expression of some components of peroxisomes and related lipid pathways in frontal cortex area 8 in sALS, sFTLD-TDP and c9FTLD. Additionally, we identify a lipidomic pattern associated with the ALS-FTLD-TDP43 proteinopathy spectrum, notably characterised by down-regulation of ether lipids and acylcarnitine among other lipid species, as well as alterations in the lipidome of each phenotype of TDP43 proteinopathy, which reveals commonalities and disease-dependent differences in lipid composition. CONCLUSION: Globally, lipid alterations in the human frontal cortex of the ALS-FTLD-TDP43 proteinopathy spectrum, which involve cell membrane composition and signalling, vulnerability against cellular stress and possible glucose metabolism, are partly related to peroxisome impairment.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Lobo Frontal/metabolismo , Metabolismo dos Lipídeos , Peroxissomos/metabolismo , Proteinopatias TDP-43/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo
15.
J Med Genet ; 57(2): 132-137, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31586945

RESUMO

BACKGROUND: Since 1994, over 50 families affected by the episodic ataxia type 1 disease spectrum have been described with mutations in KCNA1, encoding the voltage-gated K+ channel subunit Kv1.1. All of these mutations are either transmitted in an autosomal-dominant mode or found as de novo events. METHODS: A patient presenting with a severe combination of dyskinesia and neonatal epileptic encephalopathy was sequenced by whole-exome sequencing (WES). A candidate variant was tested using cellular assays and patch-clamp recordings. RESULTS: WES revealed a homozygous variant (p.Val368Leu) in KCNA1, involving a conserved residue in the pore domain, close to the selectivity signature sequence for K+ ions (TVGYG). Functional analysis showed that mutant protein alone failed to produce functional channels in homozygous state, while coexpression with wild-type produced no effects on K+ currents, similar to wild-type protein alone. Treatment with oxcarbazepine, a sodium channel blocker, proved effective in controlling seizures. CONCLUSION: This newly identified variant is the first to be reported to act in a recessive mode of inheritance in KCNA1. These findings serve as a cautionary tale for the diagnosis of channelopathies, in which an unreported phenotypic presentation or mode of inheritance for the variant of interest can hinder the identification of causative variants and adequate treatment choice.


Assuntos
Ataxia/genética , Discinesias/genética , Epilepsia/genética , Canal de Potássio Kv1.1/genética , Mioquimia/genética , Ataxia/diagnóstico , Ataxia/tratamento farmacológico , Ataxia/patologia , Canalopatias/diagnóstico , Canalopatias/tratamento farmacológico , Canalopatias/genética , Canalopatias/patologia , Criança , Pré-Escolar , Discinesias/diagnóstico , Discinesias/tratamento farmacológico , Discinesias/patologia , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Homozigoto , Humanos , Lactente , Recém-Nascido , Canal de Potássio Kv1.1/ultraestrutura , Masculino , Mutação/genética , Mioquimia/diagnóstico , Mioquimia/tratamento farmacológico , Mioquimia/patologia , Oxcarbazepina/administração & dosagem , Oxcarbazepina/efeitos adversos , Linhagem , Sequenciamento do Exoma
16.
Hum Mutat ; 41(3): 632-640, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31696996

RESUMO

Hereditary spastic paraplegia (HSP) is a group of disorders with predominant symptoms of lower-extremity weakness and spasticity. Despite the delineation of numerous genetic causes of HSP, a significant portion of individuals with HSP remain molecularly undiagnosed. Through exome sequencing, we identified five unrelated families with childhood-onset nonsyndromic HSP, all presenting with progressive spastic gait, leg clonus, and toe walking starting from 7 to 8 years old. A recurrent two-base pair deletion (c.426_427delGA, p.K143Sfs*15) in the UBAP1 gene was found in four families, and a similar variant (c.475_476delTT, p.F159*) was detected in a fifth family. The variant was confirmed to be de novo in two families and inherited from an affected parent in two other families. RNA studies performed in lymphocytes from one patient with the de novo c.426_427delGA variant demonstrated escape of nonsense-mediated decay of the UBAP1 mutant transcript, suggesting the generation of a truncated protein. Both variants identified in this study are predicted to result in truncated proteins losing the capacity of binding to ubiquitinated proteins, hence appearing to exhibit a dominant-negative effect on the normal function of the endosome-specific endosomal sorting complexes required for the transport-I complex.


Assuntos
Proteínas de Transporte/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Idade de Início , Criança , Feminino , Estudos de Associação Genética/métodos , Loci Gênicos , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Linhagem , Fenótipo , Sequenciamento do Exoma
17.
Neurogenetics ; 21(2): 121-133, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31940116

RESUMO

Biallelic variants in POLR3A cause 4H leukodystrophy, characterized by hypomyelination in combination with cerebellar and pyramidal signs and variable non-neurological manifestations. Basal ganglia are spared in 4H leukodystrophy, and dystonia is not prominent. Three patients with variants in POLR3A, an atypical presentation with dystonia, and MR involvement of putamen and caudate nucleus (striatum) and red nucleus have previously been reported. Genetic, clinical findings and 18 MRI scans from nine patients with homozygous or compound heterozygous POLR3A variants and predominant striatal changes were retrospectively reviewed in order to characterize the striatal variant of POLR3A-associated disease. Prominent extrapyramidal involvement was the predominant clinical sign in all patients. The three youngest children were severely affected with muscle hypotonia, impaired head control, and choreic movements. Presentation of the six older patients was milder. Two brothers diagnosed with juvenile parkinsonism were homozygous for the c.1771-6C > G variant in POLR3A; the other seven either carried c.1771-6C > G (n = 1) or c.1771-7C > G (n = 7) together with another variant (missense, synonymous, or intronic). Striatal T2-hyperintensity and atrophy together with involvement of the superior cerebellar peduncles were characteristic. Additional MRI findings were involvement of dentate nuclei, hila, or peridentate white matter (3, 6, and 4/9), inferior cerebellar peduncles (6/9), red nuclei (2/9), and abnormal myelination of pyramidal and visual tracts (6/9) but no frank hypomyelination. Clinical and MRI findings in patients with a striatal variant of POLR3A-related disease are distinct from 4H leukodystrophy and associated with one of two intronic variants, c.1771-6C > G or c.1771-7C > G, in combination with another POLR3A variant.


Assuntos
Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Mutação , Neostriado/patologia , RNA Polimerase III/genética , Adulto , Gânglios da Base/patologia , Encéfalo/patologia , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Substância Branca/patologia , Adulto Jovem
18.
Neurobiol Dis ; 143: 105014, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32653675

RESUMO

In recent years, research on sphingolipids, particularly ceramides, has attracted increased attention, revealing the important roles and many functions of these molecules in several human neurological disorders. The nervous system is enriched with important classes of sphingolipids, e.g., ceramide and its derivatives, which compose the major portion of this group, particularly in the form of myelin. Ceramides have also emerged as important nodes for lipid signalling, both inside the cell and between cells. Until recently, knowledge about ceramides in the nervous system was limited, but currently, multiple links between ceramide signalling and neurological diseases have been reported. Alterations in the regulation of ceramide pathobiology have been shown to influence the risk of developing neurometabolic diseases. Thus, these molecules are critically important in the maintenance and development of the nervous system and are culprits or major contributors to the development of brain disorders, either inherited or multifactorial. In the present review, we highlight the critical role of ceramide signalling in several different neurological disorders as well as the effects of their perturbations and discuss how this emerging class of bioactive sphingolipids has attracted interest in the field of neurological diseases.


Assuntos
Encefalopatias/metabolismo , Ceramidas/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
19.
Am J Hum Genet ; 101(6): 965-976, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220678

RESUMO

Zellweger spectrum disorders (ZSDs) are autosomal-recessive disorders that are caused by defects in peroxisome biogenesis due to bi-allelic mutations in any of 13 different PEX genes. Here, we identified seven unrelated individuals affected with an apparent dominant ZSD in whom a heterozygous mutant PEX6 allele (c.2578C>T [p.Arg860Trp]) was overrepresented due to allelic expression imbalance (AEI). We demonstrated that AEI of PEX6 is a common phenomenon and is correlated with heterozygosity for a frequent variant in the 3' untranslated region (UTR) of the mutant allele, which disrupts the most distal of two polyadenylation sites. Asymptomatic parents, who were heterozygous for PEX c.2578C>T, did not show AEI and were homozygous for the 3' UTR variant. Overexpression models confirmed that the overrepresentation of the pathogenic PEX6 c.2578T variant compared to wild-type PEX6 c.2578C results in a peroxisome biogenesis defect and thus constitutes the cause of disease in the affected individuals. AEI promoting the overrepresentation of a mutant allele might also play a role in other autosomal-recessive disorders, in which only one heterozygous pathogenic variant is identified.


Assuntos
Regiões 3' não Traduzidas/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Desequilíbrio Alélico/genética , Síndrome de Zellweger/genética , Alelos , Células Cultivadas , Feminino , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Humanos , Masculino , Peroxissomos/genética , Peroxissomos/patologia , Sequenciamento do Exoma
20.
Am J Hum Genet ; 100(1): 105-116, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939639

RESUMO

Intellectual disability (ID) is a common neurodevelopmental disorder exhibiting extreme genetic heterogeneity, and more than 500 genes have been implicated in Mendelian forms of ID. We performed exome sequencing in a large family affected by an autosomal-dominant form of mild syndromic ID with ptosis, growth retardation, and hypotonia, and we identified an inherited 2 bp deletion causing a frameshift in BRPF1 (c.1052_1053del) in five affected family members. BRPF1 encodes a protein modifier of two histone acetyltransferases associated with ID: KAT6A (also known as MOZ or MYST3) and KAT6B (MORF or MYST4). The mRNA transcript was not significantly reduced in affected fibroblasts and most likely produces a truncated protein (p.Val351Glyfs∗8). The protein variant shows an aberrant cellular location, loss of certain protein interactions, and decreased histone H3K23 acetylation. We identified BRPF1 deletions or point mutations in six additional individuals with a similar phenotype. Deletions of the 3p25 region, containing BRPF1 and SETD5, cause a defined ID syndrome where most of the clinical features are attributed to SETD5 deficiency. We compared the clinical symptoms of individuals carrying mutations or small deletions of BRPF1 alone or SETD5 alone with those of individuals with deletions encompassing both BRPF1 and SETD5. We conclude that both genes contribute to the phenotypic severity of 3p25 deletion syndrome but that some specific features, such as ptosis and blepharophimosis, are mostly driven by BRPF1 haploinsufficiency.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Blefaroptose/genética , Genes Dominantes/genética , Histona Acetiltransferases/metabolismo , Deficiência Intelectual/genética , Mutação , Proteínas Nucleares/genética , Acetilação , Adulto , Blefarofimose/genética , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Proteínas de Ligação a DNA , Feminino , Mutação da Fase de Leitura , Haploinsuficiência/genética , Humanos , Masculino , Metiltransferases/deficiência , Metiltransferases/genética , Hipotonia Muscular/genética , Fenótipo , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA