Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(9): 3348-3358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33624832

RESUMO

Single-domain antibodies (sdAbs) offer the affinity and therapeutic value of conventional antibodies, with increased stability and solubility. Unlike conventional antibodies, however, sdAbs do not benefit from a platform manufacturing process. While successful production of a variety of sdAbs has been shown in numerous hosts, purification methods are often molecule specific or require affinity tags, which generally cannot be used in clinical manufacturing due to regulatory concerns. Here, we have developed a broadly applicable production and purification process for sdAbs in Komagataella phaffii (Pichia pastoris) and demonstrated the production of eight different sdAbs at a quality appropriate for nonclinical studies. We developed a two-step, integrated purification process without the use of affinity resins and showed that modification of a single process parameter, pH of the bridging buffer, was required for the successful purification of a variety of sdAbs. Further, we determined that this parameter can be predicted based only on the biophysical characteristics of the target molecule. Using these methods, we produced nonclinical quality sdAbs as few as 5 weeks after identifying the product sequence. Nonclinical studies of three different sdAbs showed that molecules produced using our platform process conferred protection against viral shedding of rotavirus or H1N1 influenza and were equivalent to similar molecules produced in Escherichia coli and purified using affinity tags.


Assuntos
Anticorpos Antivirais , Vírus da Influenza A Subtipo H1N1/imunologia , Rotavirus/imunologia , Saccharomycetales/crescimento & desenvolvimento , Anticorpos de Cadeia Única , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/isolamento & purificação
2.
Mol Cell Neurosci ; 67: 75-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26051800

RESUMO

Transforming growth factor beta 1 (TGF-beta1), an anti-inflammatory cytokine, has been shown to have pro-neurogenic effects on adult Neural Stem Cells (aNSC) from the dentate gyrus and in vivo models. Here, we expanded the observation of the pro-neurogenic effect of TGF-beta1 on aNSC from the subventricular zone (SVZ) of adult rats and performed a functional genomic analysis to identify candidate genes to mediate its effect. 10 candidate genes were identified by microarray analysis and further validated by qRT-PCR. Of these, Fibulin-2 was increased 477-fold and its inhibition by siRNA blocks TGF-beta1 pro-neurogenic effect. Curiously, Fibulin-2 was not expressed by aNSC but by a GFAP-positive population in the culture, suggesting an indirect mechanism of action. TGF-beta1 also induced Fibulin-2 in the SVZ in vivo. Interestingly, 5 out of the 10 candidate genes identified are known to interact with integrins, paving the way for exploring their functional role in adult neurogenesis. In conclusion, we have identified 10 genes with putative pro-neurogenic effects, 5 of them related to integrins and provided proof that Fibulin-2 is a major mediator of the pro-neurogenic effects of TGF-beta1. These data should contribute to further exploring the molecular mechanism of adult neurogenesis of the genes identified and the involvement of the integrin pathway on adult neurogenesis.


Assuntos
Células-Tronco Adultas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Fator de Crescimento Transformador beta1/farmacologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Integrinas/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(20): 7835-40, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22547816

RESUMO

Following antigen recognition on target cells, effector T cells establish immunological synapses and secrete cytokines. It is thought that T cells secrete cytokines in one of two modes: either synaptically (i.e., toward antigenic target cells) or multidirectionally, affecting a wider population of cells. This paradigm predicts that synaptically secreted cytokines such as IFN-γ will preferentially signal to antigenic target cells contacted by the T cell through an immunological synapse. Despite its physiological significance, this prediction has never been tested. We developed a live-cell imaging system to compare the responses of target cells and nonantigenic bystanders to IFN-γ secreted by CD8+, antigen-specific, cytotoxic T cells. Both target cells and surrounding nontarget cells respond robustly. This pattern of response was detected even at minimal antigenic T-cell stimulation using low doses of antigenic peptide, or altered peptide ligands. Although cytotoxic immunological synapses restrict killing to antigenic target cells, the effects of IFN-γ are more widespread.


Assuntos
Sinapses Imunológicas/imunologia , Interferon gama/metabolismo , Linfócitos T Citotóxicos/imunologia , Adenoviridae , Análise de Variância , Astrócitos/imunologia , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Processamento de Imagem Assistida por Computador , Interferon gama/imunologia , Microscopia/métodos
4.
BMC Vet Res ; 10: 8, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24401205

RESUMO

BACKGROUND: Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals.The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEßgal) generated by homologous recombination, replacing the viral gE gene with the ß-galactosidase (ßgal) gene. RESULTS: In vitro growth kinetics of the BoHV-1ΔgEßgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEßgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEßgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEßgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEßgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All animals vaccinated with the BoHV-1ΔgE ßgal strain were protected against disease after challenge and shed significantly less virus than control calves, regardless of the route and formulation they were inoculated. CONCLUSIONS: Based on its attenuation, immunogenicity and protective effect after challenge, BoHV-1ΔgEßgal virus is an efficient and safe vaccine candidate when used either as inactivated or as live attenuated forms.


Assuntos
Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/metabolismo , Proteínas Virais/metabolismo , Vacinas Virais/imunologia , Animais , Bovinos , Linhagem Celular , Cães , Feminino , Deleção de Genes , Regulação Viral da Expressão Gênica/fisiologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/imunologia , Gravidez , Complicações Infecciosas na Gravidez/prevenção & controle , Complicações Infecciosas na Gravidez/veterinária , Complicações Infecciosas na Gravidez/virologia , Vacinas Atenuadas , Vacinas de Produtos Inativados , Proteínas Virais/genética , Vacinas Virais/efeitos adversos
5.
PLoS One ; 19(7): e0301664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985719

RESUMO

Influenza viruses constitute a major threat to human health globally. The viral surface glycoprotein hemagglutinin (HA) is the immunodominant antigen, contains the site for binding to the cellular receptor (RBS), and it is the major target of neutralizing antibody responses post-infection. We developed llama-derived single chain antibody fragments (VHHs) specific for type A influenza virus. Four VHHs were identified and further characterized. VHH D81 bound residues in the proximity of the C-terminal region of HA1 of H1 and H5 subtypes, and showed weak neutralizing activity, whereas VHH B33 bound residues in the proximity of the N-terminal region of the HA's stem domain (HA2) of H1, H5, and H9 subtypes, and showed no neutralizing activity. Of most relevance, VHHs E13 and G41 recognized highly conserved conformational epitopes on the H1 HA's globular domain (HA1) and showed high virus neutralizing activity (ranging between 0.94 to 0.01µM), when tested against several human H1N1 isolates. Additionally, E13 displayed abrogated virus replication of a panel of H1N1 strains spanning over 80 years of antigenic drift and isolated from human, avian, and swine origin. Interestingly, E13 conferred protection in vivo at a dose as low as 0.05 mg/kg. Mice treated with E13 intranasally resulted in undetectable virus challenge loads in the lungs at day 4 post-challenge. The transfer of sterilizing pan-H1 immunity, by a dose in the range of micrograms given intranasally, is of major significance for a monomeric VHH and supports the further development of E13 as an immunotherapeutic agent for the mitigation of influenza infections.


Assuntos
Anticorpos Neutralizantes , Camelídeos Americanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Anticorpos de Domínio Único , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos Neutralizantes/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Camelídeos Americanos/imunologia , Anticorpos Antivirais/imunologia , Feminino , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Epitopos/imunologia , Cães , Camundongos Endogâmicos BALB C
6.
Toxicol Appl Pharmacol ; 268(3): 318-30, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23403069

RESUMO

Adenoviral vectors (Ads) are promising gene delivery vehicles due to their high transduction efficiency; however, their clinical usefulness has been hampered by their immunogenicity and the presence of anti-Ad immunity in humans. We reported the efficacy of a gene therapy approach for glioma consisting of intratumoral injection of Ads encoding conditionally cytotoxic herpes simplex type 1 thymidine kinase (Ad-TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Ad-Flt3L). Herein, we report the biodistribution, efficacy, and neurological and systemic effects of a bicistronic high-capacity Ad, i.e., HC-Ad-TK/TetOn-Flt3L. HC-Ads elicit sustained transgene expression, even in the presence of anti-Ad immunity, and can encode large therapeutic cassettes, including regulatory elements to enable turning gene expression "on" or "off" according to clinical need. The inclusion of two therapeutic transgenes within a single vector enables a reduction of the total vector load without adversely impacting efficacy. Because clinically the vectors will be delivered into the surgical cavity, normal regions of the brain parenchyma are likely to be transduced. Thus, we assessed any potential toxicities elicited by escalating doses of HC-Ad-TK/TetOn-Flt3L (1×10(8), 1×10(9), or 1×10(10) viral particles [vp]) delivered into the rat brain parenchyma. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points. The results indicate that doses up to 1×10(9) vp of HC-Ad-TK/TetOn-Flt3L can be safely delivered into the normal rat brain and underpin further developments for its implementation in a phase I clinical trial for glioma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto/métodos , Citotoxinas/administração & dosagem , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Glioblastoma/tratamento farmacológico , Imunização/métodos , Adenoviridae/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Citotoxinas/efeitos adversos , Citotoxinas/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Quimioterapia Combinada , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Vetores Genéticos/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Ratos , Ratos Endogâmicos Lew , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia , Resultado do Tratamento
7.
Mol Ther ; 20(4): 808-19, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22233583

RESUMO

The adaptive immune response to viral vectors reduces vector-mediated transgene expression from the brain. It is unknown, however, whether this loss is caused by functional downregulation of transgene expression or death of transduced cells. Herein, we demonstrate that during the elimination of transgene expression, the brain becomes infiltrated with CD4(+) and CD8(+) T cells and that these T cells are necessary for transgene elimination. Further, the loss of transgene-expressing brain cells fails to occur in the absence of IFNγ, perforin, and TNFα receptor. Two methods to induce severe immune suppression in immunized animals also fail to restitute transgene expression, demonstrating the irreversibility of this process. The need for cytotoxic molecules and the irreversibility of the reduction in transgene expression suggested to us that elimination of transduced cells is responsible for the loss of transgene expression. A new experimental paradigm that discriminates between downregulation of transgene expression and the elimination of transduced cells demonstrates that transduced cells are lost from the brain upon the induction of a specific antiviral immune response. We conclude that the anti-adenoviral immune response reduces transgene expression in the brain through loss of transduced cells.


Assuntos
Encéfalo/citologia , Interferon gama/metabolismo , Perforina/metabolismo , Transdução Genética/métodos , Transgenes/genética , Fator de Necrose Tumoral alfa/metabolismo , Adenoviridae/genética , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos
8.
Proc Natl Acad Sci U S A ; 107(46): 20021-6, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21030678

RESUMO

Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Citotoxinas/genética , Citotoxinas/uso terapêutico , Técnicas de Transferência de Genes , Terapia Genética , Glioma/tratamento farmacológico , Adenoviridae/genética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Exotoxinas/genética , Exotoxinas/uso terapêutico , Vetores Genéticos/genética , Glioma/patologia , Humanos , Imunocompetência/imunologia , Interleucina-13/genética , Interleucina-13/uso terapêutico , Camundongos , Camundongos Nus , Mutação/genética , Neurotoxinas/toxicidade , Pseudomonas/metabolismo , Transgenes/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Virol ; 84(12): 6007-17, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20375153

RESUMO

Glioblastoma multiforme (GBM) is a deadly primary brain tumor. Conditional cytotoxic/immune-stimulatory gene therapy (Ad-TK and Ad-Flt3L) elicits tumor regression and immunological memory in rodent GBM models. Since the majority of patients enrolled in clinical trials would exhibit adenovirus immunity, which could curtail transgene expression and therapeutic efficacy, we used high-capacity adenovirus vectors (HC-Ads) as a gene delivery platform. Herein, we describe for the first time a novel bicistronic HC-Ad driving constitutive expression of herpes simplex virus type 1 thymidine kinase (HSV1-TK) and inducible Tet-mediated expression of Flt3L within a single-vector platform. We achieved anti-GBM therapeutic efficacy with no overt toxicities using this bicistronic HC-Ad even in the presence of systemic Ad immunity. The bicistronic HC-Ad-TK/TetOn-Flt3L was delivered into intracranial gliomas in rats. Survival, vector biodistribution, neuropathology, systemic toxicity, and neurobehavioral deficits were assessed for up to 1 year posttreatment. Therapeutic efficacy was also assessed in animals preimmunized against Ads. We demonstrate therapeutic efficacy, with vector genomes being restricted to the brain injection site and an absence of overt toxicities. Importantly, antiadenoviral immunity did not inhibit therapeutic efficacy. These data represent the first report of a bicistronic vector platform driving the expression of two therapeutic transgenes, i.e., constitutive HSV1-TK and inducible Flt3L genes. Further, our data demonstrate no promoter interference and optimum gene delivery and expression from within this single-vector platform. Analysis of the efficacy, safety, and toxicity of this bicistronic HC-Ad vector in an animal model of GBM strongly supports further preclinical testing and downstream process development of HC-Ad-TK/TetOn-Flt3L for a future phase I clinical trial for GBM.


Assuntos
Adenoviridae/genética , Técnicas de Transferência de Genes , Glioma/genética , Glioma/terapia , Herpesvirus Humano 1/enzimologia , Timidina Quinase/uso terapêutico , Proteínas Virais/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/uso terapêutico , Adenoviridae/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação da Expressão Gênica , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glioma/metabolismo , Herpesvirus Humano 1/genética , Humanos , Ratos , Ratos Endogâmicos Lew , Timidina Quinase/genética , Timidina Quinase/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
10.
Mol Pain ; 5: 42, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19656360

RESUMO

BACKGROUND: Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. RESULTS: Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. CONCLUSION: Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya.


Assuntos
Adenoviridae/genética , Dor Facial/terapia , Terapia Genética , Vetores Genéticos/genética , Glutamato Descarboxilase/fisiologia , Gânglio Trigeminal/metabolismo , Analgesia/métodos , Animais , Galinhas , Glutamato Descarboxilase/genética , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
11.
J Virol ; 82(9): 4680-4, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18287240

RESUMO

Gene therapy is proposed as a novel therapeutic strategy for treating glioblastoma multiforme (GBM), a devastating brain cancer. In the clinic, antivector immune responses pose formidable challenges. Herein we demonstrate that high-capacity adenovirus vectors (HC-Ads) carrying the conditional cytotoxic gene herpes simplex virus type 1-thymidine kinase (TK) induce tumor regression and long-term survival in an intracranial glioma model, even in the presence of systemic antiadenovirus immunity, as could be encountered in patients. First-generation Ad-TK failed to elicit tumor regression in this model. These results pave the way for implementing HC-Ad-TK-mediated gene therapy as a powerful adjuvant for treating GBM.


Assuntos
Adenoviridae/genética , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Glioblastoma/terapia , Timidina Quinase/uso terapêutico , Adenoviridae/imunologia , Animais , Anticorpos Antivirais/farmacologia , Encéfalo/patologia , Neoplasias Encefálicas/terapia , Modelos Animais de Doenças , Herpesvirus Humano 1/enzimologia , Humanos , Ratos , Ratos Endogâmicos Lew , Taxa de Sobrevida , Timidina Quinase/genética , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
12.
Mol Ther ; 16(2): 343-51, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18180781

RESUMO

Immune responses against vectors or encoded transgenes can impose limitations on gene therapy. We demonstrated that tetracycline-regulated high-capacity adenoviral vectors (HC-Ads) sustain regulated transgene expression in the brain even in the presence of systemic pre-existing immune responses against adenoviruses. In this study we assessed whether systemic pre-existing immune responses against the transgene products, i.e., beta-Gal or the tetracycline-dependent (TetON) regulatory transcription factors (rtTA2(S)M2 and the tTS(Kid)), affect transgene expression levels and the safety profile of HC-Ads in the brain. We pre-immunized mice with plasmids encoding the TetON switch expressing rtTA2(S)M2 and the tTS(Kid) or beta-Gal. HC-Ads expressing beta-Gal under the control of the TetON switch were then injected into the striatum. We assessed levels and distribution of beta-Gal expression, and evaluated local inflammation and neuropathological changes. We found that systemic immunity against beta-Gal, but not against the TetON switch, led to inflammation and reduction of transgene expression in the striatum. Therefore, the regulatory TetON switch appears to be safe to use, and capable of sustaining transgene expression in the brain even in the presence of an immune response against its components. Systemic immunity against the transgene had the effect of curtailing its expression, thereby affecting the efficacy and safety of gene delivery to the brain. This factor should be considered when developing gene therapies for neurological use.


Assuntos
Adenoviridae/genética , Encéfalo/metabolismo , Imunização/métodos , Transgenes/genética , Animais , Western Blotting , Encéfalo/imunologia , Feminino , Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Imuno-Histoquímica , Inflamação/imunologia , Camundongos , Plasmídeos/genética , Tetraciclina/farmacologia , beta-Galactosidase/metabolismo
13.
Neuro Oncol ; 10(1): 19-31, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18079358

RESUMO

The disseminated characteristics of human glioblastoma multiforme (GBM) make it a particularly difficult tumor to treat with long-term efficacy. Most preclinical models of GBM involve treatment of a single tumor mass. For therapeutic outcomes to translate from the preclinical to the clinical setting, induction of an antitumor response capable of eliminating multifocal disease is essential. We tested the hypothesis that expression of Flt3L (human soluble FMS-like tyrosine kinase 3 ligand) and TK (herpes simplex virus type 1-thymidine kinase) within brain gliomas would mediate regression of the primary, treated tumor mass and a secondary, untreated tumor growing at a distant site from the primary tumor and the site of therapeutic vector injection. In both the single-GBM and multifocal-GBM models used, all saline-treated control animals succumbed to tumors by day 22. Around 70% of the animals bearing a single GBM mass treated with an adenovirus expressing Flt3L (AdFlt3L) and an adenovirus expressing TK (AdTK + GCV) survived long term. Approximately 50% of animals bearing a large primary GBM that were implanted with a second GBM in the contralateral hemisphere at the same time the primary tumors were being treated with AdFlt3L and AdTK also survived long term. A second multifocal GBM model, in which bilateral GBMs were implanted simultaneously and only the right tumor mass was treated with AdFlt3L and AdTK, also demonstrated long-term survival. While no significant difference in survival was found between unifocal and multifocal GBM-bearing animals treated with AdFlt3L and AdTK, both treatments were statistically different from the saline-treated control group (p < 0.05). Our results demonstrate that combination therapy with AdFlt3L and AdTK can eradicate multifocal brain tumor disease in a syngeneic, intracranial GBM model.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Glioblastoma/terapia , Proteínas de Membrana/metabolismo , Timidina Quinase/metabolismo , Adenoviridae/genética , Animais , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Glioblastoma/patologia , Humanos , Masculino , Microscopia Confocal , Ratos , Ratos Endogâmicos Lew , Transplante Isogênico
14.
Methods Mol Biol ; 434: 239-66, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18470649

RESUMO

Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the "OFF" state, and expression should quickly reach therapeutic levels in the "ON" state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA(2)S-M2 inducer and tTS(Kid) silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo.


Assuntos
Adenoviridae/genética , Regulação da Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Glioma/metabolismo , Glioma/terapia , Transgenes/fisiologia , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Antibacterianos/uso terapêutico , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Southern Blotting , Células Cultivadas , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Doxiciclina/uso terapêutico , Exotoxinas/genética , Exotoxinas/metabolismo , Glioma/genética , Humanos , Tetraciclina/uso terapêutico , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Exotoxina A de Pseudomonas aeruginosa
15.
Mol Neurobiol ; 55(2): 1068-1081, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28092084

RESUMO

When disrupted, iron homeostasis negatively impacts oligodendrocyte (OLG) differentiation and impairs myelination. To better understand myelin formation and OLG maturation, in vivo and in vitro studies were conducted to evaluate the effect of iron deficiency (ID) not only on OLG maturation but also on astrocytes (AST) and microglial cells (MG). In vivo experiments in an ID model were carried out to describe maturational events during OLG and AST development and the reactive profile of MG during myelination when iron availability is lower than normal. In turn, in vitro assays were conducted to explore proliferating and maturational states of each glial cell type derived from control or ID conditions. Studies targeted NG2, PDGFRα, CNPAse, CC1, and MBP expression in OLG, GFAP and S100 expression in AST, and CD11b, ED1, and cytokine expression in MG, as well as BrDU incorporation in the three cell types. Our results show that ID affected OLG development at early stages, not only reducing their maturation capacity but also increasing their proliferation and affecting their morphological complexity. AST ID proliferated more than control ones and were more immature, much like OLG. Cytokine expression in ID animals reflected an anti-inflammatory state which probably influenced OLG maturation. These results show that ID conditions alter all glial cells and may impact myelin formation, which could be regulated by a mechanism involving a cross talk between AST, MG, and oligodendrocyte progenitors (OPC).


Assuntos
Anemia Ferropriva/metabolismo , Astrócitos/metabolismo , Ferro/metabolismo , Microglia/metabolismo , Oligodendroglia/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Bainha de Mielina/metabolismo , Ratos , Ratos Wistar
16.
Mol Neurobiol ; 55(11): 8637-8650, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29582397

RESUMO

The specific roles of Notch in progressive adulthood neurodegenerative disorders have begun to be unraveled in recent years. A number of independent studies have shown significant increases of Notch expression in brains from patients at later stages of sporadic Alzheimer's disease (AD). However, the impact of Notch canonical signaling activation in the pathophysiology of AD is still elusive. To further investigate this issue, 2-month-old wild-type (WT) and hemizygous McGill-R-Thy1-APP rats (Tg(+/-)) were injected in CA1 with lentiviral particles (LVP) expressing the transcriptionally active fragment of Notch, known as Notch Intracellular Domain (NICD), (LVP-NICD), or control lentivirus particles (LVP-C). The Tg(+/-) rat model captures presymptomatic aspects of the AD pathology, including intraneuronal amyloid beta (Aß) accumulation and early cognitive deficits. Seven months after LVP administration, Morris water maze test was performed, and brains isolated for biochemical and histological analysis. Our results showed a learning impairment and a worsening of spatial memory in LVP-NICD- as compared to LVP-C-injected Tg(+/-) rats. In addition, immuno histochemistry, ELISA multiplex, Western blot, RT-qPCR, and 1H-NMR spectrometry of cerebrospinal fluid (CSF) indicated that chronic expression of NICD promoted hippocampal vessel thickening with accumulation of Aß in brain microvasculature, alteration of blood-brain barrier (BBB) permeability, and a decrease of CSF glucose levels. These findings suggest that, in the presence of early Aß pathology, expression of NICD may contribute to the development of microvascular abnormalities, altering glucose transport at the BBB with impact on early decline of spatial learning and memory.


Assuntos
Doença de Alzheimer/patologia , Vasos Sanguíneos/patologia , Glucose/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/patologia , Receptores Notch/química , Receptores Notch/metabolismo , Memória Espacial , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/complicações , Doença de Alzheimer/fisiopatologia , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Modelos Animais de Doenças , Vetores Genéticos/metabolismo , Células HEK293 , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Inflamação/patologia , Lentivirus/genética , Transtornos da Memória/complicações , Transtornos da Memória/fisiopatologia , Microvasos/patologia , Domínios Proteicos , Espectroscopia de Prótons por Ressonância Magnética , Ratos Transgênicos , Ratos Wistar
17.
Neuro Oncol ; 9(3): 245-58, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17522335

RESUMO

Expression of the immune-stimulatory molecule Fms-like tyrosine kinase 3 ligand (Flt3L) and the conditional cytotoxic enzyme herpes simplex virus type 1 thymidine kinase (HSV1-TK) provides long-term immune-mediated survival of large glioblastoma multiforme (GBM) models in rodents. A limitation for predictive testing of novel antiglioma therapies has been the lack of a glioma model in a large animal. Dogs bearing spontaneous GBM may constitute an attractive large-animal model for GBM, which so far has remained underappreciated. In preparation for a clinical trial in dogs bearing spontaneous GBMs, we tested and optimized adenovirus-mediated transgene expression with negligible toxicity in the dog brain in vivo and in canine J3T glioma cells. Expression of the marker gene beta-galactosidase (beta-Gal) was higher when driven by the murine (m) than the human (h) cytomegalovirus (CMV) promoter in the dog brain in vivo, without enhanced inflammation. In the canine brain, beta-Gal was expressed mostly in astrocytes. beta-Gal activity in J3T cells was also higher with the mCMV than the hCMV promoter driving tetracycline-dependent (TetON) transgene expression within high-capacity adenovirus vectors (HC-Ads). Dog glioma cells were efficiently transduced by HC-Ads expressing mCMV-driven HSV1-TK, which induced 90% reduction in cell viability in the presence of ganciclovir. J3T cells were also effectively transduced with HC-Ads expressing Flt3L under the control of the regulatable TetON promoter system, and as predicted, Flt3L release was stringently inducer dependent. HC-Ads encoding therapeutic transgenes under the control of regulatory sequences driven by the mCMV promoter are excellent vectors for the treatment of spontaneous GBM in dogs, which constitute an ideal preclinical animal model.


Assuntos
Adenoviridae/genética , Neoplasias Encefálicas/genética , Encéfalo/fisiologia , Terapia Genética/métodos , Glioma/genética , Regiões Promotoras Genéticas , Transgenes/fisiologia , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Citomegalovirus/genética , Cães , Ensaio de Imunoadsorção Enzimática , Engenharia Genética/métodos , Vetores Genéticos , Glioma/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Confocal , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Transdução Genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
18.
Cancer Res ; 65(16): 7194-204, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16103070

RESUMO

In spite of preclinical efficacy and recent randomized, controlled studies with adenoviral vectors expressing herpes simplex virus-1 thymidine kinase (HSV1-TK) showing statistically significant increases in survival, most clinical trials using single therapies have failed to provide major therapeutic breakthroughs. Because glioma is a disease with dismal prognosis and rapid progression, it is an attractive target for gene therapy. Preclinical models using microscopic brain tumor models (e.g., < or =0.3 mm3) may not reflect the pathophysiology and progression of large human tumors. To overcome some of these limitations, we developed a syngeneic large brain tumor model. In this model, administration of single therapeutic modalities, either conditional cytotoxicity or immunostimulation, fail. However, when various immunostimulatory therapies were delivered in combination with conditional cytotoxicity (HSV1-TK), only the combined delivery of fms-like tyrosine kinase ligand (Flt3L) and HSV1-TK significantly prolonged the survival of large tumor-bearing animals (> or =80%; P < or = 0.005). When either macrophages or CD4+ cells were depleted before administration of viral therapy, TK + Flt3L therapy failed to prolong survival. Meanwhile, depletion of CD8+ cells or natural killer cells did not affect TK + Flt3L efficacy. Spinal cord of animals surviving 6 months after TK + Flt3L were evaluated for the presence of autoimmune lesions. Whereas macrophages were present within the corticospinal tract and low levels of T-cell infiltration were detected, these effects are not indicative of an overt autoimmune disorder. We propose that combined Flt3L and HSV1-TK adenoviral-mediated gene therapy may provide an effective antiglioma treatment with increased efficacy in clinical trials of glioma.


Assuntos
Adjuvantes Imunológicos/farmacologia , Neoplasias Encefálicas/terapia , Ciclosporina/farmacologia , Terapia Genética/métodos , Glioma/terapia , Adenovírus Humanos/genética , Sequência de Aminoácidos , Animais , Autoimunidade , Encéfalo/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Terapia Combinada , Vetores Genéticos/genética , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/genética , Humanos , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Ratos , Ratos Endogâmicos Lew , Medula Espinal/imunologia , Timidina Quinase/biossíntese , Timidina Quinase/genética , Timidina Quinase/metabolismo
19.
Curr Gene Ther ; 5(6): 559-72, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16457646

RESUMO

Pituitary tumors are the most common primary intracranial neoplasms. Although most pituitary tumors are considered typically benign, others can cause severe and progressive disease. The principal aims of pituitary tumor treatment are the elimination or reduction of the tumor mass, normalization of hormone secretion and preservation of remaining pituitary function. In spite of major advances in the therapy of pituitary tumors, for some of the most difficult tumors, current therapies that include medical, surgical and radiotherapeutic methods are often unsatisfactory and there is a need to develop new treatment strategies. Gene therapy, which uses nucleic acids as drugs, has emerged as an attractive therapeutic option for the treatment of pituitary tumors that do not respond to classical treatment strategies if the patients become intolerant to the therapy. The development of animal models for pituitary tumors and hormone hypersecretion has proven to be critical for the implementation of novel treatment strategies and gene therapy approaches. Preclinical trials using several gene therapy approaches for the treatment of anterior pituitary diseases have been successfully implemented. Several issues need to be addressed before clinical implementation becomes a reality, including the development of more effective and safer viral vectors, uncovering novel therapeutic targets and development of targeted expression of therapeutic transgenes. With the development of efficient gene delivery vectors allowing long-term transgene expression with minimal toxicity, gene therapy will become one of the most promising approaches for treating pituitary adenomas.


Assuntos
Adenoma/terapia , Terapia Genética/métodos , Neoplasias Hipofisárias/terapia , Adenoma/epidemiologia , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Marcação de Genes , Vetores Genéticos/uso terapêutico , Hormônios/metabolismo , Humanos , Neoplasias Hipofisárias/classificação , Neoplasias Hipofisárias/epidemiologia , Neoplasias Hipofisárias/metabolismo
20.
Clin Cancer Res ; 20(6): 1555-1565, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24501391

RESUMO

PURPOSE: Glioblastoma multiforme is the most common primary brain cancer in adults. Chemotherapy with temozolomide (TMZ) significantly prolongs the survival of patients with glioblastoma multiforme. However, the three-year survival is still approximately 5%. Herein, we combined intratumoral administration of an adenoviral vector expressing Flt3L (Ad-Flt3L) with systemic temozolomide to assess its impact on therapeutic efficacy. EXPERIMENTAL DESIGN: Wild-type or immunodeficient mice bearing intracranial glioblastoma multiforme or metastatic melanoma were treated with an intratumoral injection of Ad-Flt3L alone or in combination with the conditionally cytotoxic enzyme thymidine kinase (Ad-TK), followed by systemic administration of ganciclovir and temozolomide. We monitored survival and measured the tumor-infiltrating immune cells. RESULTS: Although treatment with temozolomide alone led to a small improvement in median survival, when used in combination with gene therapy-mediated immunotherapy, it significantly increased the survival of tumor-bearing mice. The antitumor effect was further enhanced by concomitant intratumoral administration of Ad-TK, leading to 50% to 70% long-term survival in all tumor models. Although temozolomide reduced the content of T cells in the tumor, this did not affect the therapeutic efficacy. The antitumor effect of Ad-Flt3L+Ad-TK+TMZ required an intact immune system because the treatment failed when administered to knock out mice that lacked lymphocytes or dendritic cells. CONCLUSIONS: Our results challenge the notion that chemotherapy leads to a state of immune-suppression which impairs the ability of the immune system to mount an effective antitumor response. Our work indicates that temozolomide does not inhibit antitumor immunity and supports its clinical implementation in combination with immune-mediated therapies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/patologia , Dacarbazina/análogos & derivados , Glioblastoma/patologia , Imunoterapia/métodos , Adenoviridae , Animais , Dacarbazina/uso terapêutico , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Temozolomida , Timidina Quinase/genética , Timidina Quinase/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA