Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Fish Shellfish Immunol ; 149: 109606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705547

RESUMO

Moritella viscosa (M. viscosa) and sea lice (Lepeophtheirus salmonis) are severe pathogens that primarily infect the skin of Atlantic salmon (Salmo salar), which cause significant economic losses in the farming industry. However, the pathogenesis and molecular mechanisms underlying the host's immune defence at the post-transcriptional level remain unclear. Alternative splicing (AS) is an evolutionarily conserved post-transcriptional mechanism that can greatly increase the richness of the transcriptome and proteome. In this study, transcriptomic data derived from skin tissues of Atlantic salmon after M. viscosa and sea lice infections were used to examine the AS profiles and their differential expression patterns. In total, we identified 33,044 AS events (involving 13,718 genes) in the control (CON) group, 35,147 AS events (involving 14,340 genes) in the M. viscosa infection (MV) group, and 30,364 AS events (involving 13,142 genes) in the sea lice infection (LC) group, respectively. Among the five types of AS identified in our study (i.e., SE, A5SS, A3SS, MXE, and RI), SE was the most prevalent type in all three groups (i.e., CON, MV, and LC groups). Decreased percent-spliced-in (PSI) levels were observed in SE events under both MV- and LC-infected conditions, suggesting that MV or LC infection elevated exon-skipping isoforms and promoted the selection of shorter transcripts in numerous DAS genes. In addition, most of the differential AS genes were found to be associated with pathways related to mRNA regulation, epithelial or muscle development, and immune response. These findings provide novel insights into the role of AS in host-pathogen interactions and represent the first comparative analysis of AS in response to bacterial and parasitic infections in fish.


Assuntos
Processamento Alternativo , Copépodes , Doenças dos Peixes , Moritella , Salmo salar , Animais , Salmo salar/imunologia , Salmo salar/genética , Copépodes/fisiologia , Doenças dos Peixes/imunologia , Moritella/imunologia , Moritella/genética , Transcriptoma , Ectoparasitoses/veterinária , Ectoparasitoses/imunologia , Ectoparasitoses/genética
2.
Fish Shellfish Immunol ; 143: 109210, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951318

RESUMO

Sea lice (Lepeophtheirus salmonis) and infectious salmon anemia virus (ISAv) are two of the most important pathogens in Atlantic salmon (Salmo salar) farming and typically cause substantial economic losses to the industry. However, the immune interactions between hosts and these pathogens are still unclear, especially in the scenario of co-infection. In this study, we artificially infected Atlantic salmon with sea lice and ISAv, and investigated the gene expression patterns of Atlantic salmon head kidneys in response to both lice only and co-infection with lice and ISAv by transcriptomic analysis. The challenge experiment indicated that co-infection resulted in a cumulative mortality rate of 47.8 %, while no mortality was observed in the lice alone infection. We identified 240 differentially expressed genes (DEGs) under the lice alone infection, of which 185 were down-regulated and 55 were up-regulated, while a total of 994 DEGs were identified in the co-infection, of which 206 were down-regulated and 788 were significantly up-regulated. The pathway enrichment analysis revealed that single-infection significantly suppressed the innate immune system (e.g., the complement system), whereas co-infection induced a strong immune response, leading to the activation of immune-related signaling pathways such as Toll-like receptors and NOD-like receptors pathways, as well as significant upregulation of genes related to the activation of interferon and MH class I protein complex. Our results provide the first global transcriptomic study of gene expression in the Atlantic salmon head kidney in response to co-infection with sea lice and ISAv, and provided the baseline knowledge for understanding the immune responses during co-infection.


Assuntos
Coinfecção , Copépodes , Doenças dos Peixes , Isavirus , Salmo salar , Animais , Salmo salar/genética , Copépodes/fisiologia , Isavirus/genética , Coinfecção/veterinária , Perfilação da Expressão Gênica/veterinária , Transcriptoma , Imunidade , Rim
3.
J Fish Dis ; 44(6): 757-769, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33146907

RESUMO

Hydrogen peroxide (H2 O2 ) is used to treat sea lice infections of farmed salmonids in the Atlantic and Pacific Oceans and issues with resistance to this treatment, and others are a major threat to the sustainability of the industry. The objectives of this study were to determine how H2 O2 exposure affects survival and antioxidant-related gene expression in salmon lice (Lepeophtheirus salmonis) collected from the Bay of Fundy, New Brunswick. The maximum recommended dose of H2 O2 is 1,800 mg/L, while the EC50 values (with 95% CI) for the population tested were 1,486 (457, 2,515) mg/L for males and 2,126 (984, 3,268) mg/L for females. Neither temperature nor pretreatment with emamectin benzoate (EMB) impacted survival after H2 O2 exposure. RT-qPCR was performed on pre-adult sea lice exposed to H2 O2 and showed that four genes classically involved in the response to oxidative stress were unchanged between treated and control groups. Seven genes were found to be significantly upregulated in males and one in females. This is the first report on the efficacy and molecular responses of Atlantic Canada sea lice to H2 O2 treatment.


Assuntos
Antiparasitários/uso terapêutico , Copépodes/efeitos dos fármacos , Doenças dos Peixes/prevenção & controle , Peróxido de Hidrogênio/uso terapêutico , Doenças Parasitárias em Animais/prevenção & controle , Animais , Antioxidantes/metabolismo , Copépodes/genética , Copépodes/fisiologia , Feminino , Doenças dos Peixes/parasitologia , Expressão Gênica/efeitos dos fármacos , Ivermectina/análogos & derivados , Ivermectina/uso terapêutico , Longevidade/efeitos dos fármacos , Masculino , Novo Brunswick , Doenças Parasitárias em Animais/parasitologia , Temperatura
4.
J Fish Dis ; 43(4): 459-473, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100325

RESUMO

This study was conducted to determine the effects of a co-infection with Moritella viscosa at different exposure levels of sea lice Lepeophtheirus salmonis in Atlantic salmon (Salmo salar). M. viscosa (1.14 × 106  cfu/ml) was introduced to all experimental tanks at 10 days post-lice infection (dpLs). Mean lice counts decreased over time in both the medium lice co-infection (31.5 ± 19.0 at 7 dpLs; 16.9 ± 9.3 at 46 dpLs) and high lice co-infection (62.0 ± 10.8 at 7 dpLs; 37.6 ± 11.3 at 46 dpLs). There were significantly higher mortalities and more severe skin lesions in the high lice co-infected group compared to medium lice co-infected group or M. viscosa-only infection. Quantitative gene expression analysis detected a significant upregulation of genes in skin from the high lice co-infection group consistent with severe inflammation (il-8, mmp-9, hep, saa). Skin lesions retrieved throughout the study were positive for M. viscosa growth, but these were rarely located in regions associated with lice. These results suggest that while M. viscosa infection itself may induce skin lesion development in salmon, co-infection with high numbers of lice can enhance this impact and significantly reduce the ability of these lesions to resolve, resulting in increased mortality.


Assuntos
Coinfecção/veterinária , Copépodes/fisiologia , Doenças dos Peixes/mortalidade , Infecções por Bactérias Gram-Negativas/veterinária , Moritella/fisiologia , Salmo salar , Dermatopatias Bacterianas/veterinária , Animais , Aquicultura , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/parasitologia , Feminino , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Infecções por Bactérias Gram-Negativas/mortalidade , Imunidade Inata , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/parasitologia , Inflamação/veterinária , Masculino , Dermatopatias Bacterianas/epidemiologia , Dermatopatias Bacterianas/microbiologia , Dermatopatias Bacterianas/parasitologia , Cicatrização/genética
5.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28993459

RESUMO

The histozoic myxozoan parasite Kudoa thyrsites causes postmortem myoliquefaction and is responsible for economic losses to salmon aquaculture in the Pacific Northwest. Despite its importance, little is known about the host-parasite relationship, including the host response to infection. The present work sought to characterize the immune response in Atlantic salmon during infection, recovery, and reexposure to K. thyrsites After exposure to infective seawater, infected and uninfected smolts were sampled three times over 4,275 degree-days. Histological analysis revealed infection severity decreased over time in exposed fish, while in controls there was no evidence of infection. Following a secondary exposure of all fish, severity of infection in the controls was similar to that measured in exposed fish at the first sampling time but was significantly reduced in reexposed fish, suggesting the acquisition of protective immunity. Using immunohistochemistry, we detected a population of MHIIß+ cells in infected muscle that followed a pattern of abundance concordant with parasite prevalence. Infiltration of these cells into infected myocytes preceded destruction of the plasmodium and dissemination of myxospores. Dual labeling indicated a majority of these cells were CD83+/MHIIß+ Using reverse transcription-quantitative PCR, we detected significant induction of cellular effectors, including macrophage/dendritic cells (mhii/cd83/mcsf), B cells (igm/igt), and cytotoxic T cells (cd8/nkl), in the musculature of infected fish. These data support a role for cellular effectors such as antigen-presenting cells (monocyte/macrophage and dendritic cells) along with B and T cells in the acquired protective immune response of Atlantic salmon against K. thyrsites.


Assuntos
Imunidade Adaptativa/imunologia , Células Apresentadoras de Antígenos/imunologia , Antígenos CD/imunologia , Imunoglobulinas/imunologia , Glicoproteínas de Membrana/imunologia , Myxozoa/imunologia , Salmo salar/imunologia , Salmo salar/parasitologia , Salmão/imunologia , Salmão/parasitologia , Animais , Células Apresentadoras de Antígenos/parasitologia , Aquicultura/métodos , Linfócitos B/imunologia , Linfócitos B/parasitologia , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Células Musculares/imunologia , Células Musculares/parasitologia , Músculo Esquelético/imunologia , Músculo Esquelético/parasitologia , Doenças Parasitárias em Animais/imunologia , Doenças Parasitárias em Animais/parasitologia , Linfócitos T/imunologia , Linfócitos T/parasitologia , Antígeno CD83
6.
Sci Rep ; 12(1): 4622, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301338

RESUMO

Moritella viscosa is a Gram-negative pathogen that causes large, chronic ulcers, known as winter-ulcer disease, in the skin of several fish species including Atlantic salmon. We used a bath challenge approach to profile the transcriptome responses of M. viscosa-infected Atlantic salmon skin at the lesion (Mv-At) and away from the lesion (Mv-Aw) sites. M. viscosa infection was confirmed through RNA-based qPCR assays. RNA-Seq identified 5212 and 2911 transcripts differentially expressed in the Mv-At compared to no-infection control and Mv-Aw groups, respectively. Also, there were 563 differentially expressed transcripts when comparing the Mv-Aw to control samples. Our results suggest that M. viscosa caused massive and strong, but largely infection site-focused, transcriptome dysregulations in Atlantic salmon skin, and its effects beyond the skin lesion site were comparably subtle. The M. viscosa-induced transcripts of Atlantic salmon were mainly involved in innate and adaptive immune response-related pathways, whereas the suppressed transcripts by this pathogen were largely connected to developmental and cellular processes. As validated by qPCR, M. viscosa dysregulated transcripts encoding receptors, signal transducers, transcription factors and immune effectors playing roles in TLR- and IFN-dependent pathways as well as immunoregulation, antigen presentation and T-cell development. This study broadened the current understanding of molecular pathways underlying M. viscosa-triggered responses of Atlantic salmon, and identified biomarkers that may assist to diagnose and combat this pathogen.


Assuntos
Doenças dos Peixes , Moritella , Salmo salar , Animais , Moritella/genética , Salmo salar/genética , Pele/patologia , Transcriptoma
7.
Artigo em Inglês | MEDLINE | ID: mdl-34973489

RESUMO

Systemic phaeohyphomycosis caused by Veronaea botryosa is one of the most important emergent diseases to affect sturgeon aquaculture in North America. White sturgeon (Acipenser transmontanus) cultured at temperatures above 15 °C are at higher risk of severe disseminated disease and higher mortalities. Despite this, little is known regarding disease pathogenesis and the immune response to infection. The objective of this study was to investigate the acute (2 days post-challenge [dpc]) and chronic (32 dpc) response of white sturgeon at 13 °C and 18 °C challenged with V. botryosa via intramuscular injection, using gene expression analysis of a diverse array of soluble immune and inflammatory mediators. Significantly greater amounts of irf8 (p < 0.05) and tfg-ß (p < 0.05) genes were detected in gills of exposed fish at 18 °C when compared to those at 13 °C 32 dpc. Transcript levels of haptoglobin, serotransferrin, serum amyloid, cathelicidin, tnf-α, and il-17 were significantly increased in splenic tissues of challenged fish maintained at 18 °C late in infection (p < 0.05). However, only haptoglobin and serotransferrin transcript abundance were significantly greater in exposed fish when compared to controls 32dpc. Moreover, haptoglobin transcripts at this time point were significantly greater in exposed fish at 18 °C when compared to those challenged at 13 °C. Fewer differences were detected in fish kept at 13 °C. In agreement with transcript quantification, western blot assessment of haptoglobin showed increased levels in the challenged fish maintained at 18 °C.


Assuntos
Haptoglobinas , Transferrina , Animais , Ascomicetos , Biomarcadores , Peixes/genética , Temperatura
8.
Artigo em Inglês | MEDLINE | ID: mdl-34607242

RESUMO

Systemic phaeohyphomycosis caused by Veronaea botryosa is regarded as an important emerging mycotic disease of sturgeon aquaculture. However, no vaccines or treatments are currently available. The effects of dietary ß-glucan supplementation on resistance to V. botryosa infection was examined in controlled challenges by exposing immunostimulated and control fish to ~7.25 × 105 fungal spores/fish via intra-muscular injection. Six weeks post-challenge, cumulative mortality was determined and antibodies to acute phase-proteins (APP) were used to quantify the conserved APP peptides in the serum of challenged and control fish using Western blot. Transcript levels for all tested pro-inflammatory cytokines, APP, and regulatory cytokines in the spleen were similar amongst treatments at the end of the three-week feeding period. However, significantly higher survival occurred in fingerlings fed 0.3% ß-glucans compared to non-immunostimulated fish groups (p < 0.05) six weeks post-challenge. A strong proinflammatory response was detected in exposed treatment groups, and greater survival at 6 weeks was associated with higher transcript abundance of Il-17 in fish fed ß-glucans. Findings support the important role of this cytokine in response to fungal infection.


Assuntos
Feoifomicose , Animais , Ascomicetos , Peixes , Imunidade , Imunização
9.
Front Immunol ; 12: 787033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046944

RESUMO

Sea lice (Lepeophtheirus salmonis) are ectoparasitic copepods that cause significant economic loss in marine salmoniculture. In commercial salmon farms, infestation with sea lice can enhance susceptibility to other significant pathogens, such as the highly contagious infectious salmon anemia virus (ISAv). In this study, transcriptomic analysis was used to evaluate the impact of four experimental functional feeds (i.e. 0.3% EPA/DHA+high-ω6, 0.3% EPA/DHA+high-ω6+immunostimulant (IS), 1% EPA/DHA+high-ω6, and 1% EPA/DHA+high-ω3) on Atlantic salmon (Salmo salar) during a single infection with sea lice (L. salmonis) and a co-infection with sea lice and ISAv. The overall objectives were to compare the transcriptomic profiles of skin between lice infection alone with co-infection groups and assess differences in gene expression response among animals with different experimental diets. Atlantic salmon smolts were challenged with L. salmonis following a 28-day feeding trial. Fish were then challenged with ISAv at 18 days post-sea lice infection (dpi), and maintained on individual diets, to establish a co-infection model. Skin tissues sampled at 33 dpi were subjected to RNA-seq analysis. The co-infection's overall survival rates were between 37%-50%, while no mortality was observed in the single infection with lice. With regard to the infection status, 756 and 1303 consensus differentially expressed genes (DEGs) among the four diets were identified in "lice infection vs. pre-infection" and "co-infection vs. pre-infection" groups, respectively, that were shared between the four experimental diets. The co-infection groups (co-infection vs. pre-infection) included up-regulated genes associated with glycolysis, the interferon pathway, complement cascade activity, and heat shock protein family, while the down-regulated genes were related to antigen presentation and processing, T-cell activation, collagen formation, and extracellular matrix. Pathway enrichment analysis conducted between infected groups (lice infection vs. co-infection) resulted in several immune-related significant GO terms and pathways unique to this group, such as "autophagosome", "cytosolic DNA-sensing pathway" and "response to type I interferons". Understanding how experimental functional feeds can impact the host response and the trajectory of co-infections will be an essential step in identifying efficacious intervention strategies that account for the complexities of disease in open cage culture.


Assuntos
Ração Animal , Doenças dos Peixes , Isavirus , Infecções por Orthomyxoviridae , Salmo salar/microbiologia , Animais , Aquicultura , Coinfecção , Copépodes , Dieta , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Pele , Transcriptoma
10.
Int J Parasitol ; 50(10-11): 873-889, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32745476

RESUMO

Treatment of infestation by the ectoparasite Lepeophtheirus salmonis relies on a small number of chemotherapeutant treatments that currently meet with limited success. Drugs targeting chitin synthesis have been largely successful against terrestrial parasites where the pathway is well characterised. However, a comparable approach against salmon lice has been, until recently, less successful, likely due to a poor understanding of the chitin synthesis pathway. Post-transcriptional silencing of genes by RNA interference (RNAi) is a powerful method for evaluation of protein function in non-model organisms and has been successfully applied to the salmon louse. In the present study, putative genes coding for enzymes involved in L. salmonis chitin synthesis were characterised after knockdown by RNAi. Nauplii I stage L. salmonis were exposed to double-stranded (ds) RNA specific for several putative non-redundant points in the pathway: glutamine: fructose-6-phosphate aminotransferase (LsGFAT), UDP-N-acetylglucosamine pyrophosphorylase (LsUAP), N-acetylglucosamine phosphate mutase (LsAGM), chitin synthase 1 (LsCHS1), and chitin synthase 2 (LsCHS2). Additionally, we targeted three putative chitin deacetylases (LsCDA4557, 5169 and 5956) by knockdown. Successful knockdown was determined after moulting to the copepodite stage by real-time quantitative PCR (RT-qPCR), while infectivity potential (the number of attached chalimus II compared with the initial number of larvae in the system) was measured after exposure to Atlantic salmon and subsequent development on their host. Compared with controls, infectivity potential was not compromised in dsAGM, dsCHS2, dsCDA4557, or dsCDA5169 groups. In contrast, there was a significant effect in the dsUAP-treated group. However, of most interest was the treatment with dsGFAT, dsCHS1, dsCHS1+2, and dsCDA5956, which resulted in complete abrogation of infectivity, despite apparent compensatory mechanisms in the chitin synthesis pathway as detected by qPCR. There appeared to be a common phenotypic effect in these groups, characterised by significant aberrations in appendage morphology and an inability to swim. Ultrastructurally, dsGFAT showed a significantly distorted procuticle without distinct exo/endocuticle and intermittent electron dense (i.e. chitin) inclusions, and together with dsUAP and dsCHS1, indicated delayed entry to the pre-moult phase.


Assuntos
Quitina/biossíntese , Copépodes , Interferência de RNA , Animais , Quitina Sintase , Copépodes/enzimologia , Copépodes/genética , Doenças dos Peixes/parasitologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , Nucleotidiltransferases , RNA de Cadeia Dupla , Salmo salar/parasitologia
11.
J Nutr ; 139(8): 1487-94, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19535424

RESUMO

We used a (1)H NMR-based metabonomics approach to examine the physiological effects of the seaweed Ascophyllum nodosum in a mammalian model, assess the dosage level required to elicit a response in the urinary profile, and identify potential toxic effects. Male Sprague-Dawley rats (n = 6/group) were fed a control or 5, 10, or 15% freeze-dried, ground A. nodosum diet for 4 wk. Urine samples were collected 3 times daily (0-4, 4-8, and 8-24 h) prior to feeding experimental diets and, at the end of the study, were profiled using (1)H NMR spectroscopy. Food intake, weight gain, and serum enzyme (alanine transaminase and aspartate transaminase) levels indicated that seaweed diets were well tolerated. The spectral data and principal component analysis (PCA) revealed that rats fed 5, 10, and 15% seaweed diets had increased urinary excretion of citrate, 2-oxoglutarate, succinate, trimethylamine (TMA), TMA-N-oxide, and malonate and decreased excretion of taurine, creatinine, and acetate compared with the controls. In addition, mannitol was detected in the 8- to 24-h urine samples from seaweed-fed rats. Metabolic responses related to ingestion of seaweed polyphenolics and fiber were not observed in the spectral profiles. Increased seaweed concentration in the diet did not increase the magnitude of the rats' response as detected by (1)H NMR. Visual analysis and PCA of the spectral data for serum samples collected at the end of the study did not show diet-related clustering. The lack of toxicity at 15% seaweed incorporation allows the use of this concentration in future A. nodosum intervention studies.


Assuntos
Ascophyllum , Ácidos Carboxílicos/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Preparações de Plantas/farmacologia , Animais , Ácidos Carboxílicos/urina , Fibras na Dieta/administração & dosagem , Fibras na Dieta/farmacologia , Relação Dose-Resposta a Droga , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Espectroscopia de Ressonância Magnética , Masculino , Manitol/urina , Metabolômica , Fenóis/administração & dosagem , Fenóis/farmacologia , Preparações de Plantas/administração & dosagem , Polifenóis , Ratos , Ratos Sprague-Dawley
12.
Front Immunol ; 10: 120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778356

RESUMO

With respect to salmonid aquaculture, one of the most important bacterial pathogens due to high mortality and antibiotic usage is the causative agent of typical furunculosis, Aeromonas salmonicida spp. salmonicida (Asal). In Atlantic salmon, Salmo salar, the host response during infections with Asal is well-documented, with furunculosis outbreaks resulting in significant mortality in commercial settings. However, less is known about the host-pathogen interactions in the emerging aquaculture species, Arctic charr Salvelinus alpinus. Furthermore, there is no data on the efficacy or response of this species after vaccination with commonly administered vaccines against furunculosis. To this end, we examined the immunological response of S. alpinus during infection with Asal, with or without administration of vaccines (Forte Micro®, Forte Micro® + Renogen®, Elanco Animal Health). Artic charr (vaccinated or unvaccinated) were i.p.-injected with a virulent strain of Asal (106 CFUs/mL) and tissues were collected pre-infection/post-vaccination, 8, and 29 days post-infection. Unvaccinated Arctic charr were susceptible to Asal with 72% mortalities observed after 31 days. However, there was 72-82% protection in fish vaccinated with either the single or dual-vaccine, respectively. Protection in vaccinated fish was concordant with significantly higher serum IgM concentrations, and following RNA sequencing and transcriptome assembly, differential expression analysis revealed several patterns and pathways associated with the improved survival of vaccinated fish. Most striking was the dramatically higher basal expression of complement/coagulation factors, acute phase-proteins, and iron hemostasis proteins in pre-challenged, vaccinated fish. Remarkably, following Asal infection, this response was abrogated and instead the transcriptome was characterized by a lack of immune-stimulation compared to that of unvaccinated fish. Furthermore, where pathways of actin assembly and FcγR-mediated phagocytosis were significantly differentially regulated in unvaccinated fish, vaccinated fish showed either the opposite regulation (ForteMicro®), or no impact at all (ForteMicro®Renogen®). The present data indicates that vaccine-induced protection against Asal relies on the pre-activation and immediate control of humoral immune parameters that is coincident with reduced activation of apoptotic (e.g., NF-κB) and actin-associated pathways.


Assuntos
Aeromonas salmonicida/metabolismo , Aeromonas salmonicida/patogenicidade , Furunculose/microbiologia , Infecções por Bactérias Gram-Negativas , Imunidade Humoral , Truta/imunologia , Vacinação , Actinas/metabolismo , Animais , Aquicultura , Proteínas do Sistema Complemento/genética , Furunculose/prevenção & controle , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Imunoglobulina M/sangue , NF-kappa B/metabolismo , Fagocitose/imunologia , Análise de Sequência de RNA , Transcriptoma , Resultado do Tratamento , Truta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA