Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(7): 1693-1704, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984721

RESUMO

Caspases were originally identified as important mediators of inflammatory response and apoptosis. Recent discoveries, however, have unveiled their roles in mediating and suppressing two regulated forms of necrotic cell death, termed pyroptosis and necroptosis, respectively. These recent advances have significantly expanded our understanding of the roles of caspases in regulating development, adult homeostasis, and host defense response.


Assuntos
Caspases/metabolismo , Necrose/metabolismo , Animais , Apoptose , Humanos , Infecções/enzimologia , Infecções/metabolismo , Infecções/patologia , Inflamação/enzimologia , Inflamação/metabolismo , Inflamação/patologia , Necrose/enzimologia , Piroptose
2.
J Allergy Clin Immunol ; 152(5): 1303-1311.e1, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37506976

RESUMO

BACKGROUND: Cryopyrin-associated periodic syndrome (CAPS) is associated with NLRP3 pathogenic variants, mostly located in the NACHT (neuronal apoptosis inhibitor protein, MHC class 2 transcription activator, incompatibility locus protein from Podospora anserina, telomerase-associated protein) domain. Cold-induced urticarial rash is among the main clinical features. However, this study identified a series of 14 patients with pathogenic variants of the Y861 residue (p.Tyr861) of the LRR domain of NLRP3 and minimal prevalence of cold-induced urticarial rash. OBJECTIVES: This study aimed to address a possible genotype/phenotype correlation for patients with CAPS and to investigate at the cellular levels the impact of the Y861C substitution (p.Tyr861Cys) on NLRP3 activation. METHODS: Clinical features of 14 patients with CAPS and heterozygous substitution at position 861 in the LRR domain of NLRP3 were compared to clinical features of 48 patients with CAPS and pathogenic variants outside the LRR domain of NLRP3. IL-1ß secretion by PBMCs and purified monocytes from patients and healthy donors was evaluated following LPS and monosodium urate crystal stimulation. RESULTS: Patients with substitution at position 861 of NLRP3 demonstrated a higher prevalence of sensorineural hearing loss while being less prone to skin urticarial. In contrast to patients with classical CAPS, cells from patients with a pathogenic variant at position 861 required an activation signal to secrete IL-1ß but produced more IL-1ß during the early and late phase of secretion than cells from healthy donors. CONCLUSIONS: Pathogenic variants of Y861 of NLRP3 drive a boost-dependent oversecretion of IL-1ß associated with an atypical CAPS phenotype.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Exantema , Urticária , Humanos , Síndromes Periódicas Associadas à Criopirina/genética , Exantema/complicações , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fenótipo , Urticária/genética
3.
Clin Sci (Lond) ; 137(5): 333-351, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36856019

RESUMO

Sepsis is defined as a life-threatening organ dysfunction induced by a dysregulated host immune response to infection. Immune response induced by sepsis is complex and dynamic. It is schematically described as an early dysregulated systemic inflammatory response leading to organ failures and early deaths, followed by the development of persistent immune alterations affecting both the innate and adaptive immune responses associated with increased risk of secondary infections, viral reactivations, and late mortality. In this review, we will focus on the role of NACHT, leucin-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome in the pathophysiology of sepsis. NLRP3 inflammasome is a multiproteic intracellular complex activated by infectious pathogens through a two-step process resulting in the release of the pro-inflammatory cytokines IL-1ß and IL-18 and the formation of membrane pores by gasdermin D, inducing a pro-inflammatory form of cell death called pyroptosis. The role of NLRP3 inflammasome in the pathophysiology of sepsis can be ambivalent. Indeed, although it might protect against sepsis when moderately activated after initial infection, excessive NLRP3 inflammasome activation can induce dysregulated inflammation leading to multiple organ failure and death during the acute phase of the disease. Moreover, this activation might become exhausted and contribute to post-septic immunosuppression, driving impaired functions of innate and adaptive immune cells. Targeting the NLRP3 inflammasome could thus be an attractive option in sepsis either through IL-1ß and IL-18 antagonists or through inhibition of NLRP3 inflammasome pathway downstream components. Available treatments and results of first clinical trials will be discussed.


Assuntos
Inflamassomos , Sepse , Humanos , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Morte Celular
4.
Immunity ; 38(5): 1063-72, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23684986

RESUMO

Cochlin, an extracellular matrix protein, shares homologies with the Factor C, a serine protease found in horseshoe crabs, which is critical for antibacterial responses. Mutations in the COCH gene are responsible for human DFNA9 syndrome, a disorder characterized by neurodegeneration of the inner ear that leads to hearing loss and vestibular impairments. The physiological function of cochlin, however, is unknown. Here, we report that cochlin is specifically expressed by follicular dendritic cells and selectively localized in the fine extracellular network of conduits in the spleen and lymph nodes. During inflammation, cochlin was cleaved by aggrecanases and secreted into blood circulation. In models of lung infection with Pseudomonas aeruginosa and Staphylococcus aureus, Coch(-/-) mice show reduced survival linked to defects in local cytokine production, recruitment of immune effector cells, and bacterial clearance. By producing cochlin, FDCs thus contribute to the innate immune response in defense against bacteria.


Assuntos
Células Dendríticas Foliculares/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Imunidade Inata , Infecções por Pseudomonas/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Endopeptidases/metabolismo , Proteínas da Matriz Extracelular/sangue , Proteínas da Matriz Extracelular/genética , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pseudomonas aeruginosa/imunologia , Baço/metabolismo
5.
Mol Cell ; 49(2): 331-8, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23246432

RESUMO

NLRP3 is an important pattern recognition receptor involved in mediating inflammasome activation in response to viral and bacterial infections as well as various proinflammatory stimuli associated with tissue damage or malfunction. Upon activation, NLRP3 assembles a multimeric inflammasome complex comprising the adaptor ASC and the effector pro-caspase-1 to mediate the activation of caspase-1. Although NLRP3 expression is induced by the NF-κB pathway, the posttranscriptional molecular mechanism controlling the activation of NLRP3 remains elusive. Using both pharmacological and molecular approaches, we show that the activation of NLRP3 inflammasome is regulated by a deubiquitination mechanism. We further identify the deubiquitinating enzyme, BRCC3, as a critical regulator of NLRP3 activity by promoting its deubiquitination and characterizing NLRP3 as a substrate for the cytosolic BRCC3-containing BRISC complex. Our results elucidate a regulatory mechanism involving BRCC3-dependent NLRP3 regulation and highlight NLRP3 ubiquitination as a potential therapeutic target for inflammatory diseases.


Assuntos
Proteínas de Transporte/metabolismo , Endopeptidases/metabolismo , Inflamassomos/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Proteínas de Transporte/química , Caspase 1/metabolismo , Enzimas Desubiquitinantes , Endopeptidases/genética , Endopeptidases/fisiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Mapeamento de Peptídeos , Estrutura Terciária de Proteína , Piranos/farmacologia , RNA Interferente Pequeno/genética , Compostos de Sulfidrila/farmacologia , Receptor 4 Toll-Like/metabolismo , Ubiquitinação
6.
PLoS Pathog ; 13(10): e1006630, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28968459

RESUMO

Guanylate binding proteins (GBPs) are interferon-inducible proteins involved in the cell-intrinsic immunity against numerous intracellular pathogens. The molecular mechanisms underlying the potent antibacterial activity of GBPs are still unclear. GBPs have been functionally linked to the NLRP3, the AIM2 and the caspase-11 inflammasomes. Two opposing models are currently proposed to explain the GBPs-inflammasome link: i) GBPs would target intracellular bacteria or bacteria-containing vacuoles to increase cytosolic PAMPs release ii) GBPs would directly facilitate inflammasome complex assembly. Using Francisella novicida infection, we investigated the functional interactions between GBPs and the inflammasome. GBPs, induced in a type I IFN-dependent manner, are required for the F. novicida-mediated AIM2-inflammasome pathway. Here, we demonstrate that GBPs action is not restricted to the AIM2 inflammasome, but controls in a hierarchical manner the activation of different inflammasomes complexes and apoptotic caspases. IFN-γ induces a quantitative switch in GBPs levels and redirects pyroptotic and apoptotic pathways under the control of GBPs. Furthermore, upon IFN-γ priming, F. novicida-infected macrophages restrict cytosolic bacterial replication in a GBP-dependent and inflammasome-independent manner. Finally, in a mouse model of tularemia, we demonstrate that the inflammasome and the GBPs are two key immune pathways functioning largely independently to control F. novicida infection. Altogether, our results indicate that GBPs are the master effectors of IFN-γ-mediated responses against F. novicida to control antibacterial immune responses in inflammasome-dependent and independent manners.


Assuntos
Francisella tularensis/imunologia , Proteínas de Ligação ao GTP/imunologia , Inflamassomos/imunologia , Interferon gama/imunologia , Tularemia/imunologia , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Francisella , Técnicas de Silenciamento de Genes , Infecções por Bactérias Gram-Negativas/imunologia , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Rheumatology (Oxford) ; 57(1): 100-111, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040788

RESUMO

Objectives: FMF is the most frequent autoinflammatory disease and is associated in most patients with bi-allelic MEFV mutations. MEFV encodes Pyrin, an inflammasome sensor activated following RhoGTPase inhibition. The functional consequences of MEFV mutations on the ability of Pyrin variants to act as inflammasome sensors are largely unknown. The aim of this study was to assess whether MEFV mutations affect the ability of Pyrin to detect RhoGTPase inhibition and other inflammasome stimuli. Methods: IL-1ß and IL-18 released by monocytes from healthy donors (HDs) and FMF patients were measured upon specific engagement of the Pyrin, NLRP3 and NLRC4 inflammasomes. Cell death kinetics following Pyrin activation was monitored in real time. Results: Monocytes from FMF patients secreted significantly more IL-1ß and IL-18 and died significantly faster than HD monocytes in response to low concentrations of Clostridium difficile toxin B (TcdB), a Pyrin-activating stimulus. Monocytes from patients bearing two MEFV exon 10 pathogenic variants displayed an increased Pyrin inflammasome response compared with monocytes from patients with a single exon 10 pathogenic variant indicating a gene-dosage effect. Using a short priming step, the response of monocytes from FMF patients to NLRP3- and NLRC4-activating stimuli was normal indicating that MEFV mutations trigger a specific hypersensitivity of monocytes to low doses of a Pyrin-engaging stimulus. Conclusion: Contrary to the NLRP3 mutations described in cryopyrin-associated periodic syndrome, FMF-associated MEFV mutations do not lead to a constitutive activation of Pyrin. Rather, FMF-associated mutations are hypermorphic mutations that specifically decrease the activation threshold of the Pyrin inflammasome without affecting other canonical inflammasomes.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Febre Familiar do Mediterrâneo/genética , Monócitos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Pirina/genética , Trifosfato de Adenosina/farmacologia , Adolescente , Adulto , Antígenos de Bactérias/farmacologia , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Estudos de Casos e Controles , Morte Celular , Criança , Pré-Escolar , Febre Familiar do Mediterrâneo/imunologia , Feminino , Voluntários Saudáveis , Humanos , Inflamassomos/genética , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Ionóforos/farmacologia , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Mutação , Nigericina/farmacologia , Pirina/imunologia , Salmonella typhimurium , Proteínas rho de Ligação ao GTP
8.
Sci Signal ; 17(833): eabn8003, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652763

RESUMO

Inflammasomes are multiprotein platforms that control caspase-1 activation, which process the inactive precursor forms of the inflammatory cytokines IL-1ß and IL-18, leading to an inflammatory type of programmed cell death called pyroptosis. Studying inflammasome-driven processes, such as pyroptosis-induced cell swelling, under controlled conditions remains challenging because the signals that activate pyroptosis also stimulate other signaling pathways. We designed an optogenetic approach using a photo-oligomerizable inflammasome core adapter protein, apoptosis-associated speck-like containing a caspase recruitment domain (ASC), to temporally and quantitatively manipulate inflammasome activation. We demonstrated that inducing the light-sensitive oligomerization of ASC was sufficient to recapitulate the classical features of inflammasomes within minutes. This system showed that there were two phases of cell swelling during pyroptosis. This approach offers avenues for biophysical investigations into the intricate nature of cellular volume control and plasma membrane rupture during cell death.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Inflamassomos , Optogenética , Piroptose , Inflamassomos/metabolismo , Optogenética/métodos , Animais , Humanos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Camundongos , Caspase 1/metabolismo , Caspase 1/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética
9.
J Leukoc Biol ; 115(4): 706-713, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38146798

RESUMO

Sepsis triggers a complex response marked by the simultaneous presence of proinflammatory and immunosuppressive elements, disrupting the mechanisms intended to maintain homeostasis. While the NLRP3 inflammasome has been demonstrated to contribute to the inflammatory side, its connection with delayed sepsis-induced immunosuppression remains unexplored. The present objective was to concomitantly and prospectively assess NLRP3 activation (IL-1ß, IL-18, and soluble receptors) and features of immune failure (IL-10, mHLA-DR, myeloid-derived suppressor cells) in septic patients. To validate our findings, we conducted a transcriptomic analysis of mRNA of NLRP3-related genes (IL-18R1, IL-1R2) on an additional cohort of 107 patients. Two distinct endotypes were identified. One cluster displayed moderate inflammation rapidly returning to normal values, while the other exhibited a higher inflammatory response persisting until day 28, which was associated with persistent marked immunosuppression and higher 28-d mortality. Identifying endotypes with different pro/anti-inflammatory trajectories could hold important clinical implications for the management of sepsis.


Assuntos
Inflamassomos , Sepse , Humanos , Terapia de Imunossupressão , Inflamassomos/genética , Interleucina-1beta/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Sepse/genética
10.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38530241

RESUMO

NLRP3-associated autoinflammatory disease is a heterogenous group of monogenic conditions caused by NLRP3 gain-of-function mutations. The poor functional characterization of most NLRP3 variants hinders diagnosis despite efficient anti-IL-1 treatments. Additionally, while NLRP3 is controlled by priming and activation signals, gain-of-functions have only been investigated in response to priming. Here, we characterize 34 NLRP3 variants in vitro, evaluating their activity upon induction, priming, and/or activation signals, and their sensitivity to four inhibitors. We highlight the functional diversity of the gain-of-function mutants and describe four groups based on the signals governing their activation, correlating partly with the symptom severity. We identify a new group of NLRP3 mutants responding to the activation signal without priming, associated with frequent misdiagnoses. Our results identify key NLRP3 residues controlling inflammasome activity and sensitivity to inhibitors, and antagonistic mechanisms with broader efficacy for therapeutic strategies. They provide new insights into NLRP3 activation, an explanatory mechanism for NLRP3-AID heterogeneity, and original tools for NLRP3-AID diagnosis and drug development.


Assuntos
Mutação com Ganho de Função , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Mutação com Ganho de Função/genética , Inflamassomos/genética , Desenvolvimento de Medicamentos , Síndrome
11.
Proc Natl Acad Sci U S A ; 107(32): 14164-9, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660724

RESUMO

Dysregulation of autophagy, a cellular catabolic mechanism essential for degradation of misfolded proteins, has been implicated in multiple neurodegenerative diseases. However, the mechanisms that lead to the autophagy dysfunction are still not clear. Based on the results of a genome-wide screen, we show that reactive oxygen species (ROS) serve as common mediators upstream of the activation of the type III PI3 kinase, which is critical for the initiation of autophagy. Furthermore, ROS play an essential function in the induction of the type III PI3 kinase and autophagy in response to amyloid beta peptide, the main pathogenic mediator of Alzheimer's disease (AD). However, lysosomal blockage also caused by Abeta is independent of ROS. In addition, we demonstrate that autophagy is transcriptionally down-regulated during normal aging in the human brain. Strikingly, in contrast to normal aging, we observe transcriptional up-regulation of autophagy in the brains of AD patients, suggesting that there might be a compensatory regulation of autophagy. Interestingly, we show that an AD drug and an AD drug candidate have inhibitory effects on autophagy, raising the possibility that decreasing input into the lysosomal system may help to reduce cellular stress in AD. Finally, we provide a list of candidate drug targets that can be used to safely modulate levels of autophagy without causing cell death.


Assuntos
Envelhecimento/genética , Doença de Alzheimer/patologia , Autofagia/genética , Encéfalo/fisiologia , Estudo de Associação Genômica Ampla , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica , Humanos , Lisossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Viruses ; 15(12)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140660

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a dysregulated response to infection. In this context, the aberrant activation of the NLRP3 inflammasome has been documented mostly through the measurement of increased plasmatic concentrations of IL-1ß and IL-18. At the cellular level, contradictory results have been published. However, no study has comprehensively monitored NLRP3 inflammasome activation at the basal level and after ex vivo reactivation of whole blood monocytes and neutrophils focusing on ICU patients with bacterial and viral sepsis, including a longitudinal analysis. Thus, we conducted a prospective longitudinal study, examining NLRP3 inflammasome functionality in COVID-19 ICU patients (n = 15) and bacterial septic shock patients (n = 17) during the first week of ICU hospitalization, compared with healthy donors. Using two whole-blood flow cytometry assays, we detected ASC speck-positive monocytes (i.e., monocytes presenting the polymerization of ASC proteins) and activated caspase-1 in polymorphonuclear cells as read-outs, both at baseline and following nigericin stimulation, a drug that forms pores and activates the NLRP3 inflammasome. Our findings showed that, at baseline and regardless of the type of infection, patients exhibited reduced ASC speck-positive monocytes and decreased activated caspase-1 in PMN compared to healthy volunteers. This decrease was prominent at day 0. Following nigericin stimulation, this reduction was also observed and persisted throughout the first week of hospitalization, irrespective of the cellular population or parameter being considered. Notably, at day 0, this diminished activation and response to stimulation of NLRP3 was associated with a higher 28-day mortality rate. Consequently, our observations highlighted a concurrent decline in both basal expression and ex vivo activation of the NLRP3 inflammasome in circulating myeloid cells from patients with bacterial and viral sepsis in association with increased mortality.


Assuntos
Inflamassomos , Sepse , Humanos , Caspase 1/metabolismo , Inflamassomos/metabolismo , Estudos Longitudinais , Nigericina , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estudos Prospectivos , Sepse/mortalidade
13.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746533

RESUMO

NLRP3 is a pattern recognition receptor with a well-documented role in inducing inflammasome assembly in response to cellular stress. Deregulation of its activity leads to many inflammatory disorders including gouty arthritis, Alzheimer disease, and cancer. Whereas its role in the context of cancer has been mostly explored in the immune compartment, whether NLRP3 exerts functions unrelated to immunity in cancer development remains unexplored. Here, we demonstrate that NLRP3 interacts with the ATM kinase to control the activation of the DNA damage response, independently of its inflammasome activity. NLRP3 down-regulation in both broncho- and mammary human epithelial cells significantly impairs ATM pathway activation, leading to lower p53 activation, and provides cells with the ability to resist apoptosis induced by acute genotoxic stress. Interestingly, NLRP3 expression is down-regulated in non-small cell lung cancers and breast cancers, and its expression positively correlates with patient overall survival. Our findings identify a novel non-immune function for NLRP3 in maintaining genome integrity and strengthen the concept of a functional link between innate immunity and DNA damage sensing pathways to maintain cell integrity.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Imunidade Inata , Dano ao DNA , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
14.
EMBO J ; 27(2): 433-46, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18200046

RESUMO

Accumulation of depolarized mitochondria within beta-cells has been associated with oxidative damage and development of diabetes. To determine the source and fate of depolarized mitochondria, individual mitochondria were photolabeled and tracked through fusion and fission. Mitochondria were found to go through frequent cycles of fusion and fission in a 'kiss and run' pattern. Fission events often generated uneven daughter units: one daughter exhibited increased membrane potential (delta psi(m)) and a high probability of subsequent fusion, while the other had decreased membrane potential and a reduced probability for a fusion event. Together, this pattern generated a subpopulation of non-fusing mitochondria that were found to have reduced delta psi(m) and decreased levels of the fusion protein OPA1. Inhibition of the fission machinery through DRP1(K38A) or FIS1 RNAi decreased mitochondrial autophagy and resulted in the accumulation of oxidized mitochondrial proteins, reduced respiration and impaired insulin secretion. Pulse chase and arrest of autophagy at the pre-proteolysis stage reveal that before autophagy mitochondria lose delta psi(m) and OPA1, and that overexpression of OPA1 decreases mitochondrial autophagy. Together, these findings suggest that fission followed by selective fusion segregates dysfunctional mitochondria and permits their removal by autophagy.


Assuntos
Autofagia/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/fisiologia , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Linhagem Celular , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Mutação , Espécies Reativas de Oxigênio/metabolismo
15.
Cells ; 11(20)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291172

RESUMO

Alteration of NLRP3 inflammasome pathway including hyper-activation or exhaustion has been implicated in the pathophysiology of many diseases. Following cell stimulation, aggregation of the ASC protein into a multiprotein complex, the ASC speck, has been proposed as a specific read-out for monitoring NLRP3 inflammasome activation by flow cytometry in clinical samples. So far, only a few papers have described a technique to detect ASC speck formation directly in whole blood without any cell purification, and none included an ex vivo stimulation. The objective of this study was thus to develop a simple and shortened flow cytometry protocol to detect ASC speck formation directly in whole blood including an ex vivo stimulation step. We showed that after red blood cells lysis and removal of the LPS stimulation step, ASC speck formation can be detected in both monocytes and neutrophils from healthy donors directly in nigericin-stimulated whole blood samples. Using samples from four septic shock patients, we showed that this technique allows for the detection of NLRP3 inflammasome exhaustion in clinical samples. This novel shortened and simple whole blood protocol should facilitate day-to-day monitoring of NLRP3 inflammasome activation and exhaustion in both monocytes and neutrophils in clinical studies.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Citometria de Fluxo/métodos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Lipopolissacarídeos , Nigericina
16.
Med Sci (Paris) ; 38(6-7): 545-552, 2022.
Artigo em Francês | MEDLINE | ID: mdl-35766852

RESUMO

NLRP3 is one of the best characterized innate immune cytosolic sensor. As part of the innate immune response, the NLRP3 inflammasome detects a wide range of danger signals such as pathogens, tissue damages, cellular stress. The priming and activation of NLRP3 lead to the formation of an oligomeric intracellular complex and to the recruitment and activation of caspase-1. Once activated, not only this inflammasome complex controls the processing and release of pro-inflammatory factors including IL-1ß and IL-18, but also the inflammatory cell death pyroptosis mediated by gasdermin D pores. In this review, we describe the role of the NLRP3 inflammasome activation in viral infections with a particular interest on SARS-CoV-2 infection. In addition, we present therapies evaluated or under evaluation targeting the NLRP3 inflammasome pathway as COVID-19 treatment.


Title: L'inflammasome NLRP3 dans la physiopathologie des infections virales - Un focus sur la COVID-19. Abstract: L'inflammasome NLRP3 est un complexe multiprotéique intracellulaire impliqué dans la réponse immunitaire innée. Après la détection de signaux de dangers, tels que ceux provenant d'agents pathogènes, ce complexe s'assemble afin d'initier la production et la sécrétion de molécules pro-inflammatoires, comme l'IL(interleukine)-1ß et l'IL-18. L'inflammasome NLRP3 régule aussi l'activation de la gasdermine D, une protéine impliquée dans la mort cellulaire inflammatoire, ou pyroptose. Cette revue s'intéresse à l'activation et aux rôles de l'inflammasome NLRP3 dans les infections virales et plus particulièrement dans le cas de l'infection par le SARS-CoV-2. Une attention particulière est portée dans cette revue aux traitements évalués, ou en cours d'évaluation, ciblant la voie de l'inflammasome NLRP3 activée au cours de la COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , COVID-19/imunologia , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , SARS-CoV-2
17.
Antioxid Redox Signal ; 37(4-6): 349-369, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35166124

RESUMO

Aims: Although prebiotics, probiotics, and fecal transplantation can alter the sensation of hunger and/or feeding behavior, the role of the constitutive gut microbiota in the short-term regulation of food intake during normal physiology is still unclear. Results: An antibiotic-induced microbiota depletion study was designed to compare feeding behavior in conventional and microbiota-depleted mice. Tissues were sampled to characterize the time profile of microbiota-derived signals in mice during consumption of either standard or high-fat food for 1 h. Pharmacological and genetic tools were used to evaluate the contribution of postprandial endotoxemia and inflammatory responses in the short-term regulation of food intake. We observed constitutive microbial and macronutrient-dependent control of food intake at the time scale of a meal; that is, within 1 h of food introduction. Specifically, microbiota depletion increased food intake, and the microbiota-derived anorectic effect became significant during the consumption of high-fat but not standard food. This anorectic effect correlated with a specific postprandial microbial metabolic signature, and did not require postprandial endotoxemia or an NOD-, LRR-, and Pyrin domain-containing protein 3-inflammasome-mediated inflammatory response. Innovation and Conclusion: These findings show that the gut microbiota controls host appetite at the time scale of a meal under normal physiology. Interestingly, a microbiota-derived anorectic effect develops specifically with a high-fat meal, indicating that gut microbiota activity is involved in the satietogenic properties of foods. Antioxid. Redox Signal. 37, 349-369.


Assuntos
Depressores do Apetite , Endotoxemia , Microbiota , Animais , Ingestão de Alimentos , Peptídeo 1 Semelhante ao Glucagon , Inflamação , Camundongos , Camundongos Endogâmicos NOD , Estresse Oxidativo
18.
J Biol Chem ; 285(20): 14909-14919, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20228067

RESUMO

Mutations in the COCH (coagulation factor C homology) gene have been attributed to DFNA9 (deafness, autosomal-dominant 9), an autosomal-dominant non-syndromic hearing loss disorder. However, the mechanisms responsible for DFNA9 hearing loss remain unknown. Here, we demonstrate that mutant cochlin, the protein product of the COCH gene, forms a stable dimer that is sensitive to reducing agent. In contrast, wild-type (WT) cochlin may form only dimers transiently. Interestingly, the presence of mutant cochlin can stabilize WT cochlin in dimer conformation, providing a possible mechanism for the dominant nature of DFNA9 mutations. Furthermore, the expression of mutant cochlin eventually induces WT cochlin to form stable oligomers that are resistant to reducing agent. Finally, we show that mutant cochlin is cytotoxic in vitro and in vivo. Our study suggests a possible molecular mechanism underlying DFNA9 hearing loss and provides an in vitro model that may be used to explore protein-misfolding diseases in general.


Assuntos
Perda Auditiva/genética , Dobramento de Proteína , Proteínas/genética , Animais , Western Blotting , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Proteínas da Matriz Extracelular , Humanos , Imunoprecipitação , Camundongos , Microscopia de Fluorescência , Mutação Puntual
19.
Nat Commun ; 12(1): 5862, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615873

RESUMO

NLRP3 controls the secretion of inflammatory cytokines IL-1ß/18 and pyroptosis by assembling the inflammasome. Upon coordinated priming and activation stimuli, NLRP3 recruits NEK7 within hetero-oligomers that nucleate ASC and caspase-1 filaments, but the apical molecular mechanisms underlying inflammasome assembly remain elusive. Here we show that NEK7 recruitment to NLRP3 is controlled by the phosphorylation status of NLRP3 S803 located within the interaction surface, in which NLRP3 S803 is phosphorylated upon priming and later dephosphorylated upon activation. Phosphomimetic substitutions of S803 abolish NEK7 recruitment and inflammasome activity in macrophages in vitro and in vivo. In addition, NLRP3-NEK7 binding is also essential for NLRP3 deubiquitination by BRCC3 and subsequently inflammasome assembly, with NLRP3 phosphomimetic mutants showing enhanced ubiquitination and degradation than wildtype NLRP3. Finally, we identify CSNK1A1 as the kinase targeting NLRP3 S803. Our findings thus reveal NLRP3 S803 phosphorylation status as a druggable apical molecular mechanism controlling inflammasome assembly.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Caseína Quinase II , Caseína Quinase Ialfa , Caspase 1/metabolismo , Citocinas/metabolismo , Enzimas Desubiquitinantes , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Quinases Relacionadas a NIMA/metabolismo , Fosforilação , Piroptose , Ubiquitinação
20.
Nat Microbiol ; 6(3): 401-412, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432150

RESUMO

Inflammasomes are signalling platforms that are assembled in response to infection or sterile inflammation by cytosolic pattern recognition receptors. The consequent inflammasome-triggered caspase-1 activation is critical for the host defence against pathogens. During infection, NLRP3, which is a pattern recognition receptor that is also known as cryopyrin, triggers the assembly of the inflammasome-activating caspase-1 through the recruitment of ASC and Nek7. The activation of the NLRP3 inflammasome is tightly controlled both transcriptionally and post-translationally. Despite the importance of the NLRP3 inflammasome regulation in autoinflammatory and infectious diseases, little is known about the mechanism controlling the activation of NLRP3 and the upstream signalling that regulates the NLRP3 inflammasome assembly. We have previously shown that the Rho-GTPase-activating toxin from Escherichia coli cytotoxic necrotizing factor-1 (CNF1) activates caspase-1, but the upstream mechanism is unclear. Here, we provide evidence of the role of the NLRP3 inflammasome in sensing the activity of bacterial toxins and virulence factors that activate host Rho GTPases. We demonstrate that this activation relies on the monitoring of the toxin's activity on the Rho GTPase Rac2. We also show that the NLRP3 inflammasome is activated by a signalling cascade that involves the p21-activated kinases 1 and 2 (Pak1/2) and the Pak1-mediated phosphorylation of Thr 659 of NLRP3, which is necessary for the NLRP3-Nek7 interaction, inflammasome activation and IL-1ß cytokine maturation. Furthermore, inhibition of the Pak-NLRP3 axis decreases the bacterial clearance of CNF1-expressing UTI89 E. coli during bacteraemia in mice. Taken together, our results establish that Pak1 and Pak2 are critical regulators of the NLRP3 inflammasome and reveal the role of the Pak-NLRP3 signalling axis in vivo during bacteraemia in mice.


Assuntos
Bacteriemia/metabolismo , Toxinas Bacterianas/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Bacteriemia/imunologia , Bacteriemia/microbiologia , Carga Bacteriana , Toxinas Bacterianas/genética , Escherichia coli/genética , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Imunidade Inata , Camundongos , Fosforilação , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteína RAC2 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA