Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 215: 109011, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128403

RESUMO

Phosphate deficiency and drought are significant environmental constraints that impact both the productivity and quality of wheat. The interaction between phosphorus and water facilitates their mutual absorption processes in plants. Under conditions of both phosphorus deficiency and drought stress, we observed a significant upregulation in the expression of wheat MYB-CC transcription factors through the transcriptome analysis. 52 TaMYB-CC genes in wheat were identified and analyzed their evolutionary relationships, structures, and expression patterns. The TaMYB-CC5 gene exhibited specific expression in roots and demonstrated significant upregulation under phosphorus deficiency and drought stress compared to other TaMYB-CC genes. The overexpression of TaMYB-CC5A in Arabidopsis resulted in a significant increase of root length under stress conditions, thereby enhancing tolerance to phosphate starvation and drought stress. The wheat lines with silenced TaMYB-CC5 genes exhibited reduced root length under stress conditions and increased sensitivity to phosphate deficiency and drought stress. In addition, silencing the TaMYB-CC5 genes resulted in altered phosphorus content in leaves but did not lead to a reduction in phosphorus content in roots. Enrichment analysis the co-expression genes of TaMYB-CC5 transcription factors, we found the zinc-induced facilitator-like (ZIFL) genes were prominent associated with TaMYB-CC5 gene. The TaZIFL1, TaZIFL2, and TaZIFL5 genes were verified specifically expressed in roots and regulated by TaMYB-CC5 transcript factor. Our study reveals the pivotal role of the TaMYB-CC5 gene in regulating TaZIFL genes, which is crucial for maintaining normal root growth under phosphorus deficiency and drought stress, thereby enhanced resistance to these abiotic stresses in wheat.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Fósforo , Proteínas de Plantas , Raízes de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Fósforo/deficiência , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Plantas Geneticamente Modificadas
2.
Sci Rep ; 9(1): 15165, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31619726

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 8(1): 322, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321647

RESUMO

Zhengmai 7698 is an elite winter wheat variety widely cultivated in the Southern regions of the Yellow-Huai River Valley of China. Here, we report the molecular markers used for breeding Zhengmai 7698 and the genome composition of this cultivar revealed using genome-wide SNPs. A total of 26 DNA markers derived from the genes controlling gluten protein quality, grain hardness, flour color, disease resistance, or pre-harvesting sprouting resistance were used during breeding. Consequently, Zhengmai 7698 had strong gluten, high grain hardness index, white flour color, and high levels of resistance to powdery mildew, stripe rust infections, and pre-harvesting sprouting. Using genome complexity reduction, 28,996 high-quality SNPs distributed on 21 wheat chromosomes were identified among Zhengmai 7698 and its three parental lines (4B269, Zhengmai 9405 and Zhoumai 16). Zhengmai 7698 shared 12,776, 14,411 and 16,085 SNPs with 4B269, Zhengmai 9405 and Zhoumai 16, respectively. Thus, the contributions of 4B269, Zhengmai 9405 and Zhoumai 16 to the genome of Zhengmai 7698 were comparable. Interestingly, Zhengmai 7698 had 307 unique SNPs that are absent in all three parents. We suggest that molecular markers facilitate selection of a wheat cultivar with multiple elite traits. Analysis of genome composition with SNPs may provide useful clues for further dissecting the genetic basis of improved wheat performance.


Assuntos
Grão Comestível/genética , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Triticum/genética , Marcadores Genéticos , Genoma de Planta , Imunidade Vegetal/genética , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA