Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(13): 6016-6025, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38498698

RESUMO

Exploring advanced electrocatalysts for overall seawater splitting is of great significance for large-scale green hydrogen production in which interface engineering has been considered as an effective strategy to enhance the intrinsic activities of the electrocatalysts. In this work, CeOx-modified NiCo2O4 nanoneedle arrays are designed and constructed in situ grown on Ni foam (NF) through a facile two-step synthesis method. Density functional theory calculations reveal that the strong interaction between CeOx and NiCo2O4 can regulate the electronic states of metal surfaces and optimize the electronic structures of the materials, essentially improving the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) properties. Specifically, in alkaline electrolytes, CeOx@NiCo2O4/NF exhibits superior electrocatalytic activities and stabilities, requiring overpotentials of 238 mV for the OER and 144 mV for the HER to achieve a current density of 10 mA cm-2. When applied to a simulated seawater splitting device, the CeOx@NiCo2O4/NF also maintains a battery voltage of 1.66 V to reach 10 mA cm-2 and exhibits good stability for over 60 h, with high faradic efficiencies (FEs) close to 100% for both the OER and HER.

2.
iScience ; 27(2): 108766, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318355

RESUMO

Vascular calcification (VC) is recognized as a crucial risk factor for cardiovascular diseases. Our previous report revealed that the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) plays a role in this process. However, the underlying molecular mechanisms remain elusive. Notably, receptor-interacting protein kinase 1 (RIPK1) has been implicated in the development of cardiovascular diseases, yet its role and mechanisms in VC remain unexplored. To address this gap, we established models using chronic kidney disease mice and calcifying VSMCs to investigate the impact of RIPK1 on VC. Subsequently, a RIPK1-specific inhibitor (NEC-1) was applied in both in vitro and in vivo models. Our findings indicate significant activation of RIPK1 in calcified human arterial tissue, as well as in animal and cellular models. RIPK1 activation promotes the osteogenic transdifferentiation of VSMCs. Treatment with the NEC-1 substantially reduced VC. These results demonstrate that RIPK1 is a target for preventing VC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA