Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cancer Cell Int ; 24(1): 213, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890691

RESUMO

BACKGROUND: Increasing evidence suggests that DXS253E is critical for cancer development and progression, but the function and potential mechanism of DXS253E in colorectal cancer (CRC) remain largely unknown. In this study, we evaluated the clinical significance and explored the underlying mechanism of DXS253E in CRC. METHODS: DXS253E expression in cancer tissues was investigated using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The Kaplan-Meier plot was used to assess the prognosis of DXS253E. The cBioPortal, MethSurv, and Tumor Immune Estimation Resource (TIMER) databases were employed to analyze the mutation profile, methylation, and immune infiltration associated with DXS253E. The biological functions of DXS253E in CRC cells were determined by CCK-8 assay, plate cloning assay, Transwell assay, flow cytometry, lactate assay, western blot, and qRT-PCR. RESULTS: DXS253E was upregulated in CRC tissues and high DXS253E expression levels were correlated with poor survival in CRC patients. Our bioinformatics analyses showed that high DXS253E gene methylation levels were associated with the favorable prognosis of CRC patients. Furthermore, DXS253E levels were linked to the expression levels of several immunomodulatory genes and an abundance of immune cells. Mechanistically, the overexpression of DXS253E enhanced proliferation, migration, invasion, and the aerobic glycolysis of CRC cells through the AKT/mTOR pathway. CONCLUSIONS: We demonstrated that DXS253E functions as a potential role in CRC progression and may serve as an indicator of outcomes and a therapeutic target for regulating the AKT/mTOR pathway in CRC.

2.
Exp Cell Res ; 423(1): 113458, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608837

RESUMO

Cervical cancer is the second most common malignancy of the female reproductive tract worldwide. Although cervical cancer is caused by human papillomavirus (HPV) infection, its underlying pathogenesis requires further investigation. The present study investigated the role of kinetochore associated protein 1 (KNTC1) in cervical cancer and its association with the key virus oncoprotein, HPV E7. A series of bioinformatic analyses revealed that KNTC1 might be involved in the tumorigenesis of multiple human malignancies, including cervical cancer. Tissue microarray analysis showed that in vivo KNTC1 expression was higher in high-grade squamous intraepithelial lesions (HSILs) than in normal cervix and even higher in cervical cancer. In vitro silencing of KNTC1 increased the proliferation, invasion and migration of cervical cancer cell lines. Although not affecting apoptosis, KNTC1 silencing significantly promoted G1/S phase transition of the cell cycle. High-throughput analysis of mRNA expression showed that KNTC1 could regulate its downstream target protein Smad2 at the transcriptional level. Moreover, as the key oncoprotein of the virus, HPV E7 could inhibit the expression of KNTC1 protein, and decrease Smad2 protein expression with or without the aid of KNTC1. These results indicated that KNTC1 is a novel tumor suppressor that can impede the initiation and progression of cervical carcinoma, providing insight into the molecular mechanism by which HPV induces cervical cancer.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Infecções por Papillomavirus/genética , Proteínas E7 de Papillomavirus/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Carcinogênese/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
J Proteome Res ; 22(11): 3559-3569, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37793102

RESUMO

Anastomotic leakage (AL), one of the most severe complications in rectal surgery, is often diagnosed late because of the low specificity of the clinical symptoms and limitations of current clinical investigations. Identification of patients with early AL remains challenging. Here, we explored the protein expression profiles of AL patients to provide potential biomarkers to identify AL in patients who undergo surgery for rectal cancer. We screened differentially expressed proteins (DEPs) in drainage fluid from AL and non-AL patients using a tandem mass tag method. A total of 248 DEPs, including 98 upregulated and 150 downregulated proteins, were identified between AL and non-AL groups. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that DEPs were enriched in neutrophil degranulation, bacterial infection, proteolysis, hemostasis, and complement and coagulation cascades. The results of enzyme-linked immunosorbent assay validated that the expression of the top three upregulated DEPs, AMY2A, RETN, and CELA3A, was significantly increased in the drainage fluid of AL patients, compared with that of non-AL patients (AMY2A, P = 0.001; RETN, P < 0.0001; and CELA3A, P = 0.023). Thus, our findings provide several potential biomarkers for the early diagnosis of AL after rectal cancer resection.


Assuntos
Fístula Anastomótica , Neoplasias Retais , Humanos , Fístula Anastomótica/diagnóstico , Fístula Anastomótica/etiologia , Fístula Anastomótica/cirurgia , Proteômica , Detecção Precoce de Câncer , Neoplasias Retais/cirurgia , Neoplasias Retais/complicações , Drenagem/efeitos adversos , Drenagem/métodos , Biomarcadores
4.
BMC Pulm Med ; 23(1): 32, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690987

RESUMO

OBJECTS: The family with sequence similarity 83B (FAM83B) is one of the markers for poor prognosis in several carcinomas, but the expression and the mechanism resulted in malignant phenotype in lung adenocarcinoma (LUAD) remain to be elucidated. METHODS:  Data of RNA-seq in LUAD were downloaded from the cancer genome atlas (TCGA) database for differential expression and survival analysis, and immunohistochemistry was employed to analyze the protein expression of FAM83B in 126 cases of primary LUAD. The LUAD cell lines were collected for the detection of the effects on migration and invasion. Then, western blot was performed to measure the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and activation of PI3K/AKT/NF-κB pathway. RESULTS: FAM83B was overexpressed in multiple types of carcinomas; The differential expression analysis revealed that the level of FAM83B was higher in LUAD than that in para-carcinoma; The patients with overexpression of FAM83B were with shorter overall survival (OS), disease specific survival (DSS) and progress free interval (PFI); Enrichment analysis suggested it was related to the focal adhesion of LUAD. Immunohistochemistry analysis demonstrated that higher FAM83B expression was positively related to lymph node metastasis in primary. Scratch assay and Borden chamber assay showed that the overexpression of FAM83B promoted migration and invasion activity in vitro. Furthermore, high level of FAM83B accelerated the tumorigenesis in vivo. Western blot showed that TIMP-1 was upregulated in H1299/FAM83B OE cells accompanying by the activation of PI3K/AKT/NF-κB pathway. CONCLUSIONS: FAM83B was a marker for poor prognosis of LUAD and it might promote the expression of TIMP-1 by activating PI3K/AKT/NF-κB pathway and then affect the ECM balance, which resulted in the migration and invasion of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética
5.
Ann Diagn Pathol ; 46: 151493, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32179442

RESUMO

Cervical squamous cell carcinoma develops through a series of stages, including low-grade squamous intraepithelial lesions (LSIL), high-grade squamous intraepithelial lesions (HSIL), microinvasive squamous cell carcinoma (MISCC), and invasive squamous cell carcinoma (ISCC). The difference between HSIL and MISCC is the appearance of microinvasion, which determines the treatment for patients. However, sometimes it is difficult to differentiate HSIL from MISCC in morphology, and no effective markers are available to help determine microinvasion. Here, we evaluated the expression patterns of podoplanin in cervical tissues by immunohistochemistry staining. Results showed that podoplanin was specifically expressed in a continuous or discontinuous linear pattern within the basal layer of cells from normal cervical squamous epithelium (NS) (100%, 96/96) and HSIL (81%, 57/70). However, its expression was completely absent in microinvasive lesions (0%, 72/72), and the location of podoplanin expression loss was consistent with that of microinvasive lesions. Thus, for HSIL with positive podoplanin expression, the sudden loss of podoplanin represents the occurrence of early invasion. Furthermore, podoplanin was expressed in 3.4% (4/118) of ISCC, and its expression was not correlated with the age of the patient, tumor size, differentiation, FIGO stage, depth of invasion, lymph node, or distant metastasis. The prognosis of patients with positive podoplanin was slightly better than those without it (p > 0.05). Therefore, we found that podoplanin, as a new specific marker for the basal layer cells of cervical squamous epithelium, could assist the diagnosis of microinvasion in cervical squamous cell carcinoma. The specific staining pattern of podoplanin provides the possibility of clinical application in the future.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Glicoproteínas de Membrana/metabolismo , Displasia do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/diagnóstico , Adulto , Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/patologia , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/patologia , Displasia do Colo do Útero/patologia
6.
Can J Physiol Pharmacol ; 92(3): 205-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24593785

RESUMO

The aim of this study was to investigate whether the mitochondrial permeability transition pore (MPTP) opening was involved in the protective effects of CB2 receptor against ischemia-reperfusion (I-R) injury. For this, isolated perfused rat hearts were subjected to 30 min global ischemia followed by 120 min reperfusion, and left ventricle function was recorded. At the end of reperfusion, the infarct size in the hearts was measured by staining with triphenyltetrazolium chloride. MPTP opening and the mitochondrial membrane potential (ΔΨ(m)) were measured by flow cytometry. Western blot analysis of cytochrome c in the mitochondrion and cytosol, as well as ERK1/2 and p-ERK1/2 were performed. Administration of CB2 receptor agonist JWH133 before ischemia significantly improved the recovery of cardiac ventricular function during reperfusion, increased coronary flow, reduced infarct size, prevented the loss of ΔΨ(m) and MPTP opening, reduced the release of cytochrome c from mitochondria, and increased levels of p-ERK1/2. These effects of JWH133 were abolished by pretreatment with CB2 receptor antagonist AM630, or ERK1/2 inhibitor PD98059. Furthermore, JWH133 reversed the MPTP opening induced by atractyloside. The protective effect of JWH133 on the heart against I-R injury may be through increased ERK1/2 phosphorylation, inhibiting MPTP opening.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Canabinoides/farmacologia , Citocromos c/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide/agonistas
7.
Cell Death Dis ; 15(8): 565, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103348

RESUMO

Autophagy is closely related to the occurrence and development of human malignancies; however, the detailed mechanisms underlying autophagy in cervical cancer require further investigation. Previously, we found that the ectopic expression of NCAPH, a regulatory subunit of condensed protein complexes, significantly enhanced the proliferation of tumor cells; however, the underlying mechanisms were unclear. Here, we revealed that NCAPH is a novel autophagy-associated protein in cervical cancer that promotes cell proliferation by inhibiting autophagosome formation and reducing autophagy, with no effect on the cell cycle, apoptosis, or aging. Tripartite motif-containing protein 21 (TRIM21) is well known to be involved in inflammation, autoimmunity and cancer, mainly via its E3 ubiquitin ligase activity. Mass spectrometry and immunoprecipitation assays showed that TRIM21 interacted with NCAPH and decreased the protein stability of NCAPH via ubiquitination at the K11 lysine residue. Structural domain mutation analysis revealed that TRIM21 combined with NCAPH through its PRY/SPRY and CC domains and accelerated the degradation of NCAPH through the RING domain. Furthermore, TRIM21 promoted autophagosome formation and reduced cell proliferation by inhibiting NCAPH expression and the downstream AKT/mTOR pathway in cervical cancer cells. Immunohistochemical staining revealed that the protein expression of TRIM21 was negatively correlated with that of NCAPH and positively correlated with that of beclin-1 in cervical cancer tissues. Therefore, we provide evidence for the role of the TRIM21-NCAPH axis in cervical cancer autophagy and proliferation and the involvement of the AKT/mTOR signaling pathway in this process. These results deepen our understanding of the carcinogenesis of cervical cancer, broaden the understanding of the molecular mechanisms of TRIM21 and NCAPH, and provide guidance for individualized treatment of cervical cancer in the future.


Assuntos
Autofagia , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt , Ribonucleoproteínas , Transdução de Sinais , Serina-Treonina Quinases TOR , Ubiquitinação , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/genética , Feminino , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Linhagem Celular Tumoral , Animais , Células HeLa , Camundongos , Camundongos Nus
8.
J Exp Clin Cancer Res ; 43(1): 274, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350250

RESUMO

BACKGROUND: Somatic copy number alterations (SCNAs) are pivotal in cancer progression and patient prognosis. Dysregulated long non-coding RNAs (lncRNAs), modulated by SCNAs, significantly impact tumorigenesis, including colorectal cancer (CRC). Nonetheless, the functional significance of lncRNAs induced by SCNAs in CRC remains largely unexplored. METHODS: The dysregulated lncRNA LOC101927668, induced by copy number amplification, was identified through comprehensive bioinformatic analyses utilizing multidimensional data. Subsequent in situ hybridization was employed to ascertain the subcellular localization of LOC101927668, and gain- and loss-of-function experiments were conducted to elucidate its role in CRC progression. The downstream targets and signaling pathway influenced by LOC101927668 were identified and validated through a comprehensive approach, encompassing RNA sequencing, RT-qPCR, Western blot analysis, dual-luciferase reporter assay, evaluation of mRNA and protein degradation, and rescue experiments. Analysis of AU-rich elements (AREs) within the mRNA 3' untranslated region (UTR) of the downstream target, along with exploration of putative ARE-binding proteins, was conducted. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and dual-luciferase reporter assays were employed to elucidate potential interacting proteins of LOC101927668 and further delineate the regulatory mechanism between LOC101927668 and its downstream target. Moreover, subcutaneous xenograft and orthotopic liver xenograft tumor models were utilized to evaluate the in vivo impact of LOC101927668 on CRC cells and investigate its correlation with downstream targets. RESULTS: Significantly overexpressed LOC101927668, driven by chr7p22.3-p14.3 amplification, was markedly correlated with unfavorable clinical outcomes in our CRC patient cohort, as well as in TCGA and GEO datasets. Moreover, we demonstrated that enforced expression of LOC101927668 significantly enhanced cell proliferation, migration, and invasion, while its depletion impeded these processes in a p53-dependent manner. Mechanistically, nucleus-localized LOC101927668 recruited hnRNPD and translocated to the cytoplasm, accelerating the destabilization of RBM47 mRNA, a transcription factor of p53. As a nucleocytoplasmic shuttling protein, hnRNPD mediated RBM47 destabilization by binding to the ARE motif within RBM47 3'UTR, thereby suppressing the p53 signaling pathway and facilitating CRC progression. CONCLUSIONS: The overexpression of LOC101927668, driven by SCNAs, facilitates CRC proliferation and metastasis by recruiting hnRNPD, thus perturbing the RBM47/p53/p21 signaling pathway. These findings underscore the pivotal roles of LOC101927668 and highlight its therapeutic potential in anti-CRC interventions.


Assuntos
Neoplasias Colorretais , Progressão da Doença , RNA Longo não Codificante , Transdução de Sinais , Proteína Supressora de Tumor p53 , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células , Feminino , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Masculino , Regulação Neoplásica da Expressão Gênica , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Camundongos Nus
9.
Comput Biol Med ; 153: 106545, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646024

RESUMO

Screening cancer genomes has provided an in-depth characterization of genetic variants such as copy number variations (CNVs) and gene expression changes of non-coding transcripts. Single-dimensional experiments are often designed to differentiate a patient cohort into various sets with the aim of identifying molecular changes among groups; however, this may be inadequate to decipher the causal relationship between molecular signatures in individual patients. To overcome this challenge with respect to personalized medicine, we implemented a patient-specific multi-dimensional integrative approach to uncover coherent signals from multiple independent platforms. In particular, we focused on the consistent gene dosage effects of CNVs for both mRNA and long non-coding RNA (lncRNA) expression in nine colorectal cancer patients. We identified 511 CNV-lncRNA-mRNA regulatory triplets associated with CNVs and aberrant expression of both mRNAs and lncRNAs. By filtering out inconsistent changes among CNVs, mRNAs, and lncRNAs, we further characterized 165 coherent motifs associated with 56 genes. In total, 108 motifs were linked with 31 copy number gains, 44 upregulated lncRNAs, and 45 upregulated mRNAs. Another 57 coherent downregulated motifs were also collected. We discuss how for many of these CNV-lncRNA-mRNA regulatory triplets, their clinical impact remains to be explored, including survival time, microsatellite instability, tumor stage, and primary tumor sites. By validating two example CNV-lncRNA-mRNA triplets with up- and down-regulation, we confirmed that individual variations in multiple dimensions are a robust tool to identify reliable molecular signals for personalized medicine. In summary, we utilized a patient-specific computational pipeline to explore the consistent CNV-driven motifs consisting of lncRNAs and mRNAs. We also identified LSM14B as a potential promoter in colorectal cancer progression, suggesting that it may serve as a target for colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Variações do Número de Cópias de DNA/genética , Transcriptoma , RNA Mensageiro/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Redes Reguladoras de Genes
10.
Cell Death Dis ; 14(7): 425, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443102

RESUMO

Estrogen plays a protective role in colorectal cancer (CRC) and primarily functions through estrogen receptor ß (ERß). However, clinical strategies for CRC therapy associated with ERß are still under investigation. Our discoveries identified WFDC3 as a tumor suppressor that facilitates estrogen-induced inhibition of metastasis through the ERß/TGFBR1 signaling axis. WFDC3 interacts with ERß and increases its protein stability by inhibiting its proteasome-dependent degradation. WFDC3 represses TGFBR1 expression through ERß-mediated transcription. Blocking TGFß signaling with galunisertib, a drug used in clinical trials that targets TGFBR1, impaired the migration of CRC cells induced by WFDC3 depletion. Moreover, there was clinical significance to WFDC3 in CRC, as CRC patients with high WFDC3 expression in tumor cells had favorable prognoses. Therefore, this work suggests that WFDC3 could be an indicator for therapies targeting the estrogen/ERß pathway in CRC patients.


Assuntos
Neoplasias Colorretais , Receptor beta de Estrogênio , Humanos , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Expressão Gênica , Estrogênios , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral
11.
Cell Death Dis ; 11(12): 1049, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311486

RESUMO

Cervical cancer is one of the most common gynecological tumors in the world, and human papillomavirus (HPV) infection is its causative agent. However, the molecular mechanisms involved in the carcinogenesis of cervical cancer still require clarification. Here we found that knockdown of Non-SMC (Structural Maintenance of Chromosomes) condensin I complex subunit H (NCAPH) gene expression significantly inhibited the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of cervical cancer cells in vitro, and restrained xenograft tumor formation in vivo. Intriguingly, HPV E7 could form a positive feedback loop with NCAPH. E7 upregulated NCAPH gene expression via E2F1 which initiated NCAPH transcription by binding to its promoter directly. Silencing of NCAPH reduced E7 transcription via promoting the transition of AP-1 heterodimer from c-Fos/c-Jun to Fra-1/c-Jun. Moreover, the E7-mediated NCAPH overexpression was involved in the activation of the PI3K/AKT/SGK signaling pathway. In vivo, NCAPH expression in cervical cancer tissues was significantly higher than which in normal cervix and high-grade squamous intraepithelial lesion (HSIL) tissues, and its expression was significantly correlated with tumor size, depth of invasion and lymph node metastasis. Patients with high NCAPH expression had a significantly better survival outcomes than those with low-expression, suggesting that NCAPH-induced cell proliferation might sensitize cancer cells to adjuvant therapy. In conclusion, our results revealed the role of NCAPH in the carcinogenesis of cervical cancer in vitro and in vivo. The interaction between E7 and NCAPH expands the mechanism of HPV induced tumorigenesis and that of host genes regulating HPV E7.


Assuntos
Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Expressão Ectópica do Gene , Proteínas Imediatamente Precoces/metabolismo , Proteínas Nucleares/genética , Proteínas E7 de Papillomavirus/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo do Útero/genética , Adulto , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fator de Transcrição E2F1/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Prognóstico , Regiões Promotoras Genéticas/genética , Ligação Proteica , Multimerização Proteica , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Resultado do Tratamento , Ensaio Tumoral de Célula-Tronco , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA