Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5174, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462436

RESUMO

Peptides are important compounds with broad applications in many areas. Asymmetric transamination of α-keto amides can provide an efficient strategy to synthesize peptides, however, the process has not been well developed yet and still remains a great challenge in both enzymatic and catalytic chemistry. For biological transamination, the high activity is attributed to manifold structural and electronic factors of transaminases. Based on the concept of multiple imitation of transaminases, here we report N-quaternized axially chiral pyridoxamines 1 for enantioselective transamination of α-keto amides, to produce various peptides in good yields with excellent enantio- and diastereoselectivities. The reaction is especially attractive for the synthesis of peptides made of unnatural amino acids since it doesn't need great efforts to make chiral unnatural amino acids before amide bond formation.


Assuntos
Aminas/química , Peptídeos/química , Biocatálise , Biomimética , Catálise , Transaminases/química
2.
Chem Asian J ; 9(7): 1913-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24817667

RESUMO

Five new Zn(II) complexes, namely [Zn(3)(L)(6)] (1), [Zn(2)(Cl)(2)(L)(2) (py)(2)] (2), [Zn(2)(Br)(2) (L)(2)(py)(2)] (3), [Zn(L)(2)(py)] (4), and [Zn(2)(OAc)(2)(L)(2)(py)(2)] (5), were prepared by the solvothermal reaction of ZnX(2) (X(-) =Cl(-), Br(-), F(-), and OAc(-)) salts with a 8-hydroxyquinolinate ligand (HL) that contained a trifluorophenyl group. All of the complexes were characterized by elemental analysis, IR spectroscopy, and powder and single-crystal X-ray crystallography. The building blocks exhibited unprecedented structural diversification and their self-assembly afforded one mononuclear, three binuclear, and one trinuclear Zn(II) structures in response to different anions and solvent systems. Complexes 1-5 featured four types of supramolecular network controlled by non-covalent interactions, such as π⋅⋅⋅π-stacking, C-H⋅⋅⋅π, hydrogen-bonding, and halogen-related interactions. Investigation of their photoluminescence properties exhibited disparate emission wavelengths, lifetimes, and quantum yields in the solid state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA