RESUMO
Small cell lung cancer (SCLC) is a highly aggressive cancer of the neuroendocrine system, characterized by poor differentiation, rapid growth, and poor overall survival (OS) of patients. Despite the recent advances in the treatment of SCLC recently, the 2-year survival rate of patients with the cancer is only 14-15%, occasioned by the acquired resistance to drugs and serious off-target effects. In humans, the coding region is only 2% of the total genome, and 20% of that is associated with human diseases. Beyond the coding genome are RNAs, promoters, enhancers, and other intricate elements. The non-coding regulatory regions, mainly the non-coding RNAs (ncRNAs), regulate numerous biological activities including cell proliferation, metastasis, and drug resistance. As such, they are potential diagnostic or prognostic biomarkers, and also potential therapeutic targets for SCLC. Therefore, understanding how non-coding elements regulate SCLC development and progression holds significant clinical implications. Herein, we summarized the recent discoveries on the relationship between the non-coding elements including long non-coding RNAs (lncRNA), microRNAs (miRNAs), circular RNA (circRNA), enhancers as well as promotors, and the pathogenesis of SCLC and their potential clinical applications.
Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , RNA Longo não Codificante/genética , MicroRNAs/genética , RNA Circular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologiaRESUMO
Small cell lung cancer (SCLC) is a type of neuroendocrine tumor with high malignancy and poor prognosis. Besides the de novo SCLC, there is transformed SCLC, which has similar characteristics of pathological morphology, molecular characteristics, clinical manifestations and drug sensitivity. However, de novo SCLC and transformed SCLC have different pathogenesis and tumor microenvironment. SCLC transformation is one of the mechanisms of resistance to chemotherapy, immunotherapy, and targeted therapy in NSCLC. Two hypotheses have been used to explain the pathogenesis of SCLC transformation. Although SCLC transformation is not common in clinical practice, it has been repeatedly identified in many small patient series and case reports. It usually occurs in epidermal growth factor receptor (EGFR) mutant lung adenocarcinoma after treatment with tyrosine kinase inhibitors (TKIs). SCLC transformation can also occur in anaplastic lymphoma kinase (ALK)-positive lung cancer after treatment with ALK inhibitors and in wild-type EGFR or ALK NSCLC treated with immunotherapy. Chemotherapy was previously used to treat transformed SCLC, yet it is associated with an unsatisfactory prognosis. We comprehensively review the advancements in transformed SCLC, including clinical and pathological characteristics, and the potential effective treatment after SCLC transformation, aiming to give a better understanding of transformed SCLC and provide support for clinical uses.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/terapia , Mutação , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Transformação Celular Neoplásica/genética , Microambiente Tumoral/genéticaRESUMO
Dysregulation of microRNAs (miRs) is the hallmark of triple-negative breast cancer (TNBC), which is closely involved with its growth, metastasis, and recurrence. Dysregulated miRs are promising targets for TNBC therapy, however, targeted and accurate regulation of multiple disordered miRs in tumors is still a great challenge. Here, a multi-targeting and on-demand non-coding RNA regulation nanoplatform (MTOR) is reported to precisely regulate disordered miRs, leading to dramatical suppression of TNBC growth, metastasis, and recurrence. With the assistance of long blood circulation, ligands of urokinase-type plasminogen activator peptide and hyaluronan located in multi-functional shells enable MTOR to actively target TNBC cells and breast cancer stem cell-like cells (BrCSCs). After entering TNBC cells and BrCSCs, MTOR is subjected to lysosomal hyaluronidase-induced shell detachment, leading to an explosion of the TAT-enriched core, thereby enhancing nuclear targeting. Subsequently, MTOR could precisely and simultaneously downregulate microRNA-21 expression and upregulate microRNA-205 expression in TNBC. In subcutaneous xenograft, orthotopic xenograft, pulmonary metastasis, and recurrence TNBC mouse models, MTOR shows remarkably synergetic effects on the inhibition of tumor growth, metastasis, and recurrence due to its on-demand regulation of disordered miRs. This MTOR system opens a new avenue for on-demand regulation of disordered miRs against growth, metastasis, and recurrence of TNBC.
Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , Mama , Serina-Treonina Quinases TOR/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de CélulasRESUMO
SARS-CoV-2 variants are now still challenging all the approved vaccines, including mRNA vaccines. There is an urgent need to develop new generation mRNA vaccines with more powerful efficacy and better safety against SARS-CoV-2 variants. In this study, a new set of ionizable lipids named 4N4T are constructed and applied to form novel lipid nanoparticles called 4N4T-LNPs. Leading 4N4T-LNPs exhibit much higher mRNA translation efficiency than the approved SM-102-LNPs. To test the effectiveness of the novel delivery system, the DS mRNA encoding the full-length S protein of the SARS-CoV-2 variant is synthesized and loaded in 4N4T-LNPs. The obtained 4N4T-DS mRNA vaccines successfully trigger robust and durable humoral immune responses against SARS-CoV-2 and its variants including Delta and Omicron. Importantly, the novel vaccines have higher RBD-specific IgG titers and neutralizing antibody titers than SM-102-based DS mRNA vaccine. Besides, for the first time, the types of mRNA vaccine-induced neutralizing antibodies are found to be influenced by the chemical structure of ionizable lipids. 4N4T-DS mRNA vaccines also induce strong Th1-skewed T cell responses and have good safety. This work provides a novel vehicle for mRNA delivery that is more effective than the approved LNPs and shows its application in vaccines against SARS-CoV-2 variants.
RESUMO
Efficient translation mediated by the 5' untranslated region (5' UTR) is essential for the robust efficacy of mRNA vaccines. However, the N1-methyl-pseudouridine (m1Ψ) modification of mRNA can impact the translation efficiency of the 5' UTR. We discovered that the optimal 5' UTR for m1Ψ-modified mRNA (m1Ψ-5' UTR) differs significantly from its unmodified counterpart, highlighting the need for a specialized tool for designing m1Ψ-5' UTRs rather than directly utilizing high-expression endogenous gene 5' UTRs. In response, we developed a novel machine learning-based tool, Smart5UTR, which employs a deep generative model to identify superior m1Ψ-5' UTRs in silico. The tailored loss function and network architecture enable Smart5UTR to overcome limitations inherent in existing models. As a result, Smart5UTR can successfully design superior 5' UTRs, greatly benefiting mRNA vaccine development. Notably, Smart5UTR-designed superior 5' UTRs significantly enhanced antibody titers induced by COVID-19 mRNA vaccines against the Delta and Omicron variants of SARS-CoV-2, surpassing the performance of vaccines using high-expression endogenous gene 5' UTRs.
RESUMO
Vascular endothelial growth factor (VEGF) not only serves as an autocrine survival factor for tumor cells themselves, but also stimulates angiogenesis by paracrine pathway. Strategies targeting VEGF holds tremendous potential for tumor therapy, however, agents targeting VEGF are limited by intolerable side effects, together with incomplete and temporary blocking of VEGF, resulting in unsatisfactory and unsustained therapeutic outcomes. Herein, hierarchical-unlocking virus-esque NanoCRISPR (HUNGER) is constructed for complete, permanent and efficient intracellular disruption of autocrine and paracrine pathway of VEGF, thereby eliciting notable tumor inhibition and antiangiogenesis. After intravenous administration, HUNGER exhibits prolonged blood circulation and hyaluronic acid-CD44 mediated tumor-targeting capability. Subsequently, when matrix metalloproteinase-2 is overexpressed in the tumor microenvironment, the PEG layer will be removed. The cell-penetrating peptide R8 endows HUNGER deep tumor penetration and specific cellular uptake. Upon cellular internalization, HUNGER undergoes hyaluronidase-triggered deshielding in lysosome, lysosomal escape is realized swiftly, and then the loaded CRISPR/Cas9 plasmid (>8 kb) is transported to nucleus efficiently. Consequentially, complete, permanent and efficient intracellular disruption of autocrine and paracrine pathway of VEGF ensures inhibition of angiogenesis and tumor growth with inappreciable toxicity. Overall, this work opens a brand-new avenue for anti-VEGF therapy and presents a feasible strategy for in vivo delivery of CRISPR/Cas9 system.