Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mod Pathol ; 37(11): 100592, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39154783

RESUMO

Squamoid eccrine ductal carcinoma is a rare infiltrative tumor with morphologic features intermediate between squamous cell carcinoma (SCC) and sweat gland carcinomas such as microcystic adnexal carcinoma. Although currently classified as a sweat gland carcinoma, it has been debated whether squamoid eccrine ductal carcinoma is better classified as a variant of SCC. Furthermore, therapeutic options for patients with advanced disease are lacking. Here, we describe clinicopathologic features of a cohort of 15 squamoid eccrine ductal carcinomas from 14 unique patients, with next-generation sequencing DNA profiling for 12 cases. UV signature mutations were the dominant signature in the majority of cases. TP53 mutations were the most highly recurrent specific gene alteration, followed by mutations in NOTCH genes. Recurrent mutations in driver oncogenes were not identified. By unsupervised comparison of global transcriptome profiles in squamoid eccrine ductal carcinoma (n = 7) to SCC (n = 10), porocarcinoma (n = 4), and microcystic adnexal carcinoma (n = 4), squamoid eccrine ductal carcinomas displayed an intermediate phenotype between SCC and sweat gland tumors. Squamoid eccrine ductal carcinoma displayed significantly higher expression of 364 genes (including certain eccrine markers) and significantly lower expression of 525 genes compared with other groups. Our findings support the classification of squamoid eccrine ductal carcinoma as a carcinoma with intermediate features between SCC and sweat gland carcinoma.

2.
Exp Dermatol ; 28(8): 914-921, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-29957839

RESUMO

Fragmentation of collagen fibrils and aberrant elastic material (solar elastosis) in the dermal extracellular matrix (ECM) is among the most prominent features of photodamaged human skin. These alterations impair the structural integrity and create a dermal microenvironment prone to skin disorders. The objective of this study was to determine the physical properties (surface roughness, stiffness and hardness) of the dermal ECM in photodamaged and subject-matched sun-protected human skin. Skin samples were sectioned and analysed by histology, atomic force microscopy and nanoindentation. Dermal ECM collagen fibrils were more disorganized (ie, rougher surface), and the dermal ECM was stiffer and harder, in photodamaged forearm, compared to sun-protected underarm skin. Cleavage of collagen fibrils in sun-protected underarm dermis by recombinant human matrix metalloproteinase-1 resulted in rougher collagen fibril surface and reduced dermal stiffness and hardness. Degradation of elastotic material in photodamaged skin by treatment with purified neutrophil elastase reduced stiffness and hardness, without altering collagen fibril surface roughness. Additionally, expression of two members of the lysyl oxidase gene family, which insert cross-links that stiffen and harden collagen fibrils, was elevated in photodamaged forearm dermis. These data elucidate the contributions of fragmented collagen fibrils, solar elastosis and elevated collagen cross-linking to the physical properties of the dermal ECM in photodamaged human skin. This new knowledge extends current understanding of the impact of photodamage on the dermal ECM microenvironment.


Assuntos
Colágeno , Derme/patologia , Envelhecimento da Pele/patologia , Estudos de Casos e Controles , Derme/enzimologia , Matriz Extracelular/patologia , Dureza , Humanos , Pessoa de Meia-Idade , Proteína-Lisina 6-Oxidase/metabolismo , Luz Solar/efeitos adversos
3.
J Cell Mol Med ; 22(9): 4085-4096, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29888864

RESUMO

The dermal compartment of skin is primarily composed of collagen-rich extracellular matrix (ECM), which is produced by dermal fibroblasts. In Young skin, fibroblasts attach to the ECM through integrins. During ageing, fragmentation of the dermal ECM limits fibroblast attachment. This reduced attachment is associated with decreased collagen production, a major cause of skin thinning and fragility, in the elderly. Fibroblast attachment promotes assembly of the cellular actin cytoskeleton, which generates mechanical forces needed for structural support. The mechanism(s) linking reduced assembly of the actin cytoskeleton to decreased collagen production remains unclear. Here, we report that disassembly of the actin cytoskeleton results in impairment of TGF-ß pathway, which controls collagen production, in dermal fibroblasts. Cytoskeleton disassembly rapidly down-regulates TGF-ß type II receptor (TßRII) levels. This down-regulation leads to reduced activation of downstream effectors Smad2/Smad3 and CCN2, resulting in decreased collagen production. These responses are fully reversible; restoration of actin cytoskeleton assembly up-regulates TßRII, Smad2/Smad3, CCN2 and collagen expression. Finally, actin cytoskeleton-dependent reduction of TßRII is mediated by induction of microRNA 21, a potent inhibitor of TßRII protein expression. Our findings reveal a novel mechanism that links actin cytoskeleton assembly and collagen expression in dermal fibroblasts. This mechanism likely contributes to loss of TßRII and collagen production, which are observed in aged human skin.


Assuntos
Citoesqueleto de Actina/genética , Fibroblastos/metabolismo , Pró-Colágeno/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Adulto , Senescência Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Cultura Primária de Células , Pró-Colágeno/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Pele/citologia , Pele/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
4.
Cell Commun Signal ; 16(1): 18, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695252

RESUMO

BACKGROUND: Transcription factors YAP and TAZ function as the primary mediators of the Hippo pathway. Yet, crosstalk of YAP and TAZ with other signaling pathways remains relatively unexplored. We have explored the impact of YAP and TAZ levels on the TGF-ß/Smad signaling pathway in human skin dermal fibroblasts. METHODS: YAP and TAZ levels in dermal fibroblasts were reduced in dermal fibroblasts by siRNA-mediated knockdown. The effects of YAP and TAZ reduction on TGF-ß/Smad signaling were examined by quantitative real-time PCR, Western analysis, and immunostaining. Luciferase reporter assays and electrophoretic mobility shift assays were conducted to investigate the transcription factor DNA-binding and transcriptional activities. RESULTS: Knockdown of both YAP and TAZ (YAP/TAZ), but not either separately, impaired TGF-ß1-induced Smad3 phosphorylation and Smad3 transcriptional activity, thereby inhibiting the expression of TGF-ß target genes. This reduction by reduced levels of YAP/TAZ results from induction of inhibitory Smad7, which inhibits Smad3 phosphorylation and activity by TGF-ß1. Conversely, prevention of Smad7 induction restores Smad3 phosphorylation and Smad3 transcriptional activity in fibroblasts that have reduced YAP/TAZ. In agreement with these findings, inhibition of YAP/TAZ transcriptional activity, similar to the reduction of YAP/TAZ levels, also significantly induced Smad7 and impaired TGF-ß/Smad signaling. Further investigations revealed that reduced levels of YAP/TAZ led to induction of activator protein-1 (AP-1) activity, Activated AP-1 bound to DNA sequences in the Smad7 gene promoter, and deletion of these AP-1 binding sequences substantially reduced Smad7 promoter reporter activity. CONCLUSION: YAP/TAZ functions in concert with transcription factor AP-1 and Smad7 to regulate TGF-ß signaling, in human dermal fibroblasts. Reduction of YAP/TAZ levels leads to activation of AP-1 activity, which induces Smad7. Smad7 suppresses the TGF-ß pathway.


Assuntos
Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteína Smad7/metabolismo , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Células Cultivadas , Derme/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad7/antagonistas & inibidores , Proteína Smad7/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
5.
Am J Pathol ; 184(4): 937-943, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24485923

RESUMO

Yes-associated protein (YAP) is a transcriptional co-activator of hippo signaling pathway, which plays an important role in organ size control and tumorigenesis. Here we report that YAP and its downstream transcriptional targets CCN1 and CCN2 are markedly elevated in keratinocytes in human skin basal cell carcinoma tumor islands. In human keratinocytes, knockdown of YAP significantly reduced expression of CCN1 and CCN2, and repressed proliferation and survival. This inhibition of proliferation and survival was rescued by restoration of CCN1 expression, but not by CCN2 expression. In basal cell carcinoma stroma, CCN2-regulated genes type I collagen, fibronectin, and α-smooth muscle actin were highly expressed. Furthermore, atomic force microscopy revealed increased tissue stiffness in basal cell carcinoma stroma compared to normal dermis. These data provide evidence that up-regulation of YAP in basal cell carcinoma impacts both aberrant keratinocyte proliferation, via CCN1, and tumor stroma cell activation and stroma remodeling, via CCN2. Targeting YAP and/or CCN1 and CCN2 may provide clinical benefit in basal cell carcinoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Carcinoma Basocelular/patologia , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/biossíntese , Proteína Rica em Cisteína 61/biossíntese , Fosfoproteínas/biossíntese , Neoplasias Cutâneas/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Biomarcadores Tumorais/análise , Western Blotting , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Proteína Rica em Cisteína 61/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imuno-Histoquímica , Queratinócitos/patologia , Microdissecção e Captura a Laser , Pessoa de Meia-Idade , Fosfoproteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Células Estromais/patologia , Fatores de Transcrição , Transfecção , Proteínas de Sinalização YAP
6.
J Biol Chem ; 288(17): 12386-94, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23504324

RESUMO

Human skin largely comprises collagenous extracellular matrix. The hallmark of skin aging is fragmentation of collagen fibrils. Matrix metalloproteinases (MMPs) are largely responsible for collagen degradation. MMP-1, principally derived from dermal fibroblasts, is the major protease capable of initiating degradation of native fibrillar collagens. Presently, we report that CCN1, a secreted and extracellular matrix-associated protein, is elevated in aged human skin dermal fibroblasts in vivo and stimulates MMP-1 expression through functional interaction with αVß3 integrin in human dermal fibroblasts. CCN1 contains four conserved structural domains. Our results indicate that the three N-terminal domains (IGFBP, VWC, and TSP1), but not the C-terminal CT domain, are required for CCN1 to stimulate MMP-1 expression. This stimulation is dependent on interaction between the active structural domains and αVß3 integrin. The interaction of VWC domain with integrin αVß3 is necessary and requires functional cooperation with adjacent IGFBP and TSP1 domains to stimulate MMP-1 expression. Finally, induction of MMP-1 expression in dermal fibroblasts by CCN1 N-terminal domains resulted in fragmentation of type I collagen fibrils in a three-dimensional collagen lattice model. These data suggest that domain-specific interactions of CCN1 with αVß3 integrin contribute to human skin aging by stimulating MMP-1-mediated collagen fibril fragmentation.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Derme/metabolismo , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Integrina alfaVbeta3/metabolismo , Metaloproteinase 1 da Matriz/biossíntese , Adulto , Envelhecimento/genética , Envelhecimento/fisiologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteína Rica em Cisteína 61/genética , Derme/citologia , Feminino , Fibroblastos/citologia , Humanos , Integrina alfaVbeta3/genética , Masculino , Metaloproteinase 1 da Matriz/genética , Estrutura Terciária de Proteína , Proteólise
7.
Am J Physiol Lung Cell Mol Physiol ; 307(4): L326-37, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24973403

RESUMO

Despite extensive research, the pathogenesis of cigarette smoking (CS)-associated emphysema remains incompletely understood, thereby impeding development of novel therapeutics, diagnostics, and biomarkers. Here, we report a novel paradigm potentially involved in the development of epithelial death and tissue loss in CS-associated emphysema. After prolonged exposure of CS, CCN1 cleavage was detected both in vitro and in vivo. Full-length CCN1 (flCCN1) was secreted in an exosome-shuttled manner, and secreted plasmin converted flCCN1 to cleaved CCN1 (cCCN1) in extracellular matrix. Interestingly, exosome-shuttled flCCN1 facilitated the interleukin (IL)-8 and vascular endothelial growth factor (VEGF) release in response to cigarette smoke extract (CSE). Therefore, flCCN1 potentially promoted CS-induced inflammation via IL-8-mediated neutrophil recruitment and also maintained the lung homeostasis via VEGF secretion. Interestingly, cCCN1 abolished these functions. Furthermore, cCCN1 promoted protease and matrix metalloproteinase (MMP)-1 production after CSE. These effects were mainly mediated by the COOH-terminal fragments of CCN1 after cleavage. Both the decrease of VEGF and the elevation of MMPs favor the development of emphysema. cCCN1, therefore, likely contributes to the epithelial cell damage after CS. Additionally, CSE and cCCN1 both stimulated integrin-α7 expressions in lung epithelial cells. The integrin-α7 appeared to be the binding receptors of cCCN1 and, subsequently, mediated its cellular function by promoting MMP1. Consistent with our observation on the functional roles of cCCN1 in vitro, elevated cCCN1 level was found in the bronchoalveolar lavage fluid from mice with emphysematous changes after 6 mo CS exposure. Taken together, we hypothesize that cCCN1 promoted the epithelial cell death and tissue loss after prolonged CS exposure.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Enfisema/etiologia , Células Epiteliais/efeitos dos fármacos , Interleucina-8/metabolismo , Fumar/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar/química , Células Epiteliais/metabolismo , Fibrinolisina/metabolismo , Humanos , Cadeias alfa de Integrinas/fisiologia , Pulmão/citologia , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Camundongos , Infiltração de Neutrófilos , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Biomolecules ; 14(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39199288

RESUMO

The main component of human skin is a collagen-rich extracellular matrix (ECM), known as the matrisome. The matrisome is essential for maintaining the structural integrity and mechanical properties of the skin. Recently, we reported notable decreases in matrisome proteins in natural aging and photoaging human skin. This study aims to investigate the mRNA expression of the core matrisome proteins in human skin, comparing young versus aged and sun-protected versus sun-exposed skin by quantitative real-time PCR and immunostaining. Our findings reveal a notable decrease in core matrisome transcription in aged skin. The mRNA expression of the core matrisome, such as collagen 1A1 (COL1A1), decorin, and dermatopontin, is significantly reduced in aged skin compared to its young skin. Yet, the majority of collagen mRNA expression levels of aged sun-exposed skin are similar to those found in young sun-exposed skin. This discrepancy is primarily attributable to a substantial decrease in collagen transcription in young sun-exposed skin, suggesting early molecular changes in matrisome transcription due to sun exposure, which preceded the emergence of clinical signs of photoaging. These findings shed light on the mRNA transcript profile of major matrisome proteins and their alterations in naturally aged and photoaged human skin, offering valuable insights into skin matrisome biology.


Assuntos
Envelhecimento da Pele , Pele , Humanos , Envelhecimento da Pele/genética , Envelhecimento da Pele/efeitos da radiação , Pele/metabolismo , Pele/efeitos da radiação , Adulto , Idoso , Pessoa de Meia-Idade , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Adulto Jovem , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Luz Solar
9.
NPJ Breast Cancer ; 10(1): 43, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858374

RESUMO

Fatty acid synthesis (FAS) has been shown to play a key role in the survival of brain-metastatic (BM) breast cancer. We demonstrate that the fatty acid synthase inhibitor TVB-2640 synergizes with the topoisomerase inhibitor SN-38 in triple-negative breast cancer (TNBC) BM cell lines, upregulates FAS and downregulates cell cycle progression gene expression, and slows the motility of TNBC BM cell lines. The combination of SN-38 and TVB-2640 warrants further consideration as a potential therapeutic option in TNBC BMs.

10.
Neoplasia ; 57: 101036, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39173508

RESUMO

Assessing the molecular profiles of bladder cancer (BC) from patients with locally advanced or metastatic disease provides valuable insights, such as identification of invasive markers, to guide personalized treatment. Currently, most molecular profiling of BC is based on highly invasive biopsy or transurethral tumor resection. Liquid biopsy takes advantage of less-invasive procedures to longitudinally profile disease. Circulating tumor cells (CTCs) isolated from blood are one of the key analytes of liquid biopsy. In this study, we developed a protein and mRNA co-analysis workflow for BC CTCs utilizing the graphene oxide (GO) microfluidic chip. The GO chip was conjugated with antibodies against both EpCAM and EGFR to isolate CTCs from 1 mL of blood drawn from BC patients. Following CTC capture, protein and mRNA were analyzed using immunofluorescent staining and ion-torrent-based whole transcriptome sequencing, respectively. Elevated CTC counts were significantly associated with patient disease status at the time of blood draw. We found a count greater than 2.5 CTCs per mL was associated with shorter overall survival. The invasive markers EGFR, HER2, CD31, and ADAM15 were detected in CTC subpopulations. Whole transcriptome sequencing showed distinct RNA expression profiles from patients with or without tumor burden at the time of blood draw. In patients with advanced metastatic disease, we found significant upregulation of metastasis-related and chemotherapy-resistant genes. This methodology demonstrates the capability of GO chip-based assays to identify tumor-related RNA signatures, highlighting the prognostic potential of CTCs in metastatic BC patients.


Assuntos
Biomarcadores Tumorais , Microfluídica , Células Neoplásicas Circulantes , Neoplasias da Bexiga Urinária , Humanos , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/sangue , Feminino , Microfluídica/métodos , Masculino , Pessoa de Meia-Idade , Idoso , Metástase Neoplásica , Biópsia Líquida/métodos , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Prognóstico
11.
JNCI Cancer Spectr ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363498

RESUMO

BACKGROUND: Undifferentiated carcinoma (UC) is a rare subtype of pancreatic cancer differentiated from UC with osteoclast-like giant cells (UC-OGC) in 2019, impacting interpretation of literature that does not distinguish these subtypes. We sought to identify translationally relevant differences between these two variants and as compared to pancreatic ductal adenocarcinoma (PDAC). METHODS: We characterized clinical and multiomic differences between UC (n = 32) and UC-OGC (n = 15) using DNA-sequencing (seq), RNA-seq, and multiplex immunofluorescence (mIF) and compared these findings to PDAC. RESULTS: Characteristics at diagnosis were similar between UC and UC-OGC, though UC-OGC was more resectable (p = .009). Across all stages, median overall survival (OS) was shorter for UC than UC-OGC (0.4 vs 10.8 years, respectively; p = .003). This shorter survival was retained after stratification by resection, albeit without statistical significance (1.8 vs 11.9 years, respectively; p = .08). In a subset of patients with available tissue, the genomic landscape was similar between UC (n = 9), UC-OGC (n = 5), and PDAC (n = 159). Bulk RNA-seq was deconvoluted and, along with mIF in UC (n = 13), UC-OGC (n = 5), and PDAC (n = 16), demonstrated statistically significantly increased antigen-presenting cells (APCs), including M2 macrophages and NK cells, and decreased cytotoxic and regulatory T cells (Tregs) in UC and UC-OGC vs PDAC. Findings were similar between UC and UC-OGC except decreased Tregs in UC-OGC (p = .04). CONCLUSIONS: In this series, UC is more aggressive than UC-OGC with these variants having more APCs and fewer Tregs than PDAC, suggesting potential for immune-modulating therapies in treatment of these pancreatic cancer subtypes.

12.
Eur Urol ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39155193

RESUMO

BACKGROUND AND OBJECTIVE: Predicting response to therapy for each patient's tumor is critical to improving long-term outcomes for muscle-invasive bladder cancer. This study aims to establish ex vivo bladder cancer patient-derived organoid (PDO) models that are representative of patients' tumors and determine the potential efficacy of standard of care and curated experimental therapies. METHODS: Tumor material was collected prospectively from consented bladder cancer patients to generate short-term PDO models, which were screened against a panel of clinically relevant drugs in ex vivo three-dimensional culture. Multiomic profiling was utilized to validate the PDO models, establish the molecular characteristics of each tumor, and identify potential biomarkers of drug response. Gene expression (GEX) patterns between paired primary tissue and PDO samples were assessed using Spearman's rank correlation coefficients. Molecular correlates of therapy response were identified using Pearson correlation coefficients and Kruskal-Wallis tests with Dunn's post hoc pairwise comparison testing. KEY FINDINGS AND LIMITATIONS: A total of 106 tumors were collected from 97 patients, with 65 samples yielding sufficient material for complete multiomic molecular characterization and PDO screening with six to 32 drugs/combinations. Short-term PDOs faithfully represent the tumor molecular characteristics, maintain diverse cell types, and avoid shifts in GEX-based subtyping that accompany long-term PDO cultures. Utilizing an integrative approach, novel correlations between ex vivo drug responses and genomic alterations, GEX, and protein expression were identified, including a multiomic signature of gemcitabine response. The positive predictive value of ex vivo drug responses and the novel multiomic gemcitabine response signature need to be validated in future studies. CONCLUSIONS AND CLINICAL IMPLICATIONS: Short-term PDO cultures retain the molecular characteristics of tumor tissue and avoid shifts in expression-based subtyping that have plagued long-term cultures. Integration of multiomic profiling and ex vivo drug screening data identifies potential predictive biomarkers, including a novel signature of gemcitabine response. PATIENT SUMMARY: Better models are needed to predict patient response to therapy in bladder cancer. We developed a platform that uses short-term culture to best mimic each patient's tumor and assess potential sensitivity to therapeutics.

13.
J Cell Commun Signal ; 17(2): 287-296, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37245186

RESUMO

Skin primarily comprises a collagen-rich extracellular matrix (ECM) that provides structural and functional support to the skin. Aging causes progressive loss and fragmentation of dermal collagen fibrils, leading to thin and weakened skin (Dermal aging). We previously reported that CCN1 is elevated in naturally aged human skin, photoaged human skin, and acute UV-irradiated human skin dermal fibroblasts in vivo. Elevated CCN1 alters the expression of numerous secreted proteins that have deleterious effects on the dermal microenvironment, impairing the structural integrity and function of the skin. Here we show that CCN1 is predominantly elevated in the human skin dermis by UV irradiation and accumulated in the dermal extracellular matrix. Laser capture microdissection indicated that CCN1 is predominantly induced in the dermis, not in the epidermis, by acute UV irradiation in human skin in vivo. Interestingly, while UV-induced CCN1 in the dermal fibroblasts and in the medium is transient, secreted CCN1 accumulates in the ECM. We explored the functionality of the matrix-bound CCN1 by culturing dermal fibroblasts on an acellular matrix plate that was enriched with a high concentration of CCN1. We observed that matrix-bound CCN1 activates integrin outside-in signaling resulting in the activation of FAK and its downstream target paxillin and ERK, as well as elevated MMP-1 and inhibition of collagen, in human dermal fibroblasts. These data suggest that accumulation of CCN1 in the dermal ECM is expected to progressively promote the aging of the dermis and thereby negatively impact the function of the dermis.

14.
J Cell Biochem ; 113(9): 3011-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22566095

RESUMO

Dermal fibroblasts produce a collagen-rich extracellular matrix, which confers mechanical strength and resiliency to human skin. During aging, collagen production is reduced and collagen fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This aberrant collagen homeostasis results in net collagen deficiency, which impairs the structural integrity and function of skin. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis, in primary human skin dermal fibroblasts. As replicative senescence is a form of cellular aging, we have utilized replicative senescent dermal fibroblasts to further investigate the connection between elevated CCN1 and aberrant collagen homeostasis. CCN1 mRNA and protein levels were significantly elevated in replicative senescent dermal fibroblasts. Replicative senescent dermal fibroblasts also expressed significantly reduced levels of type I procollagen and increased levels of MMP-1. Knockdown of elevated CCN1 in senescent dermal fibroblasts partially normalized both type I procollagen and MMP-1 expression. These data further support a key role of CCN1 in regulation of collagen homeostasis. Elevated expression of CCN1 substantially increased collagen lattice contraction and fragmentation caused by replicative senescent dermal fibroblasts. Atomic force microscopy (AFM) further revealed collagen fibril fragmentation and disorganization were largely prevented by knockdown of CCN1 in replicative senescent dermal fibroblasts, suggesting CCN1 mediates MMP-1-induced alterations of collagen fibrils by replicative senescent dermal fibroblasts. Given the ability of CCN1 to regulate both production and degradation of type I collagen, it is likely that elevated-CCN1 functions as an important mediator of collagen loss, which is observed in aged human skin.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Fibroblastos/metabolismo , Pele/citologia , Western Blotting , Células Cultivadas , Senescência Celular/genética , Senescência Celular/fisiologia , Colágeno/metabolismo , Proteína Rica em Cisteína 61/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Microscopia de Força Atômica
15.
JID Innov ; 2(3): 100111, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35480397

RESUMO

CCN2, a member of the CCN family of matricellular proteins, is a key mediator and biomarker of tissue fibrosis. We previously reported that CCN2 is significantly reduced in aged human dermis, which contributes to dermal aging through the downregulation of collagen production, the major structural protein in the skin. In this study, we investigated the underlying mechanisms of the age-related downregulation of CCN2 in human skin dermal fibroblasts. Dermal fibroblasts isolation and laser-capture microdissection‒coupled RT-PCR from human skin confirmed that age-related reduction of CCN2 expression is regulated by epigenetics. Mechanistic investigation revealed that age-related reduction of CCN2 is regulated by impaired dermal fibroblast spreading/cell size, which is a prominent feature of aged dermal fibroblasts in vivo. Gain-of-function and loss-of-function analysis confirmed that age-related downregulation of CCN2 is regulated by YAP/TAZ in response to reduced cell size. We further confirmed that restoration of dermal fibroblast size rapidly reversed the downregulation of CCN2 in a YAP/TAZ-dependent manner. Finally, we confirmed that reduced YAP/TAZ nuclear staining is accompanied by loss of CCN2 in aged human skin in vivo. Our data reveal a mechanism by which age-related reduction in fibroblast spreading/size drives YAP/TAZ-dependent downregulation of CCN2 expression, which in turn contributes to loss of collagen in aged human skin.

16.
Exp Dermatol ; 20(7): 572-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21488975

RESUMO

Alterations in connective tissue collagen are prominent features of both chronologically aged and photoaged (ageing because of sun exposure) human skin. These age-related abnormalities are mediated in part by cysteine-rich protein 61 (CCN1). CCN1 is elevated in the dermis of both chronologically aged and photoaged human skin in vivo and promotes aberrant collagen homeostasis by down-regulating type I collagen, the major structural protein in skin, and promoting collagen degradation. Vitamin A and its metabolites have been shown to improve chronologically aged and photoaged skin by promoting deposition of new collagen and preventing its degradation. Here, we investigated regulation of CCN1 expression by retinoids in skin equivalent cultures and chronologically aged and photoaged human skin in vivo. In skin equivalent cultures, all-trans retinoic acid (RA), the major bioactive form of vitamin A in skin, significantly increased type I procollagen and reduced collagenase (matrix metalloproteinases-1, MMP-1). Addition of recombinant human CCN1 to skin equivalent cultures significantly reduced type I procollagen and increased MMP-1. Importantly, RA significantly reduced CCN1 expression in skin equivalent cultures. Topical treatment with retinol (vitamin A, 0.4%) for 7days significantly reduced CCN1 mRNA and protein expression in both chronologically aged (80+years) and photoaged human skin in vivo, compared to vehicle-treated skin. These data indicate that the mechanism by which retinoids improve aged skin, through increased collagen production, involves down-regulation of CCN1.


Assuntos
Colágeno Tipo I/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Expressão Gênica/efeitos dos fármacos , Homeostase/fisiologia , Retinoides/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Pele/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Colágeno Tipo I/genética , Colágeno Tipo I/ultraestrutura , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/farmacologia , Derme/citologia , Derme/efeitos dos fármacos , Derme/metabolismo , Derme/ultraestrutura , Regulação para Baixo/genética , Células Epidérmicas , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/genética , Homeostase/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Microscopia de Força Atômica , Pessoa de Meia-Idade , Receptores do Ácido Retinoico/genética , Proteínas Recombinantes/farmacologia , Retinoides/administração & dosagem , Pele/efeitos dos fármacos , Pele/ultraestrutura , Envelhecimento da Pele/fisiologia , Propriedades de Superfície , Engenharia Tecidual/métodos , Tretinoína/farmacologia , Vitamina A/administração & dosagem , Vitamina A/farmacologia , Adulto Jovem
17.
J Dermatol Sci ; 102(1): 36-46, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33648801

RESUMO

BACKGROUND: Aged human skin is primarily attributable to the loss of collagen. Hepatocyte growth factor (HGF) acts as an anti-fibrotic factor by suppression of collagen production. In aged human skin, HGF is elevated in dermal fibroblasts and thus contributes to dermal aging (thin dermis) by suppression of collagen production. OBJECTIVE: We aimed to investigate the underlying mechanisms of age-related elevation of HGF expression. METHODS: Collagen fibrils in the aged skin dermis are fragmented and disorganized, which impairs collagen-fibroblast interaction, resulting in reduced fibroblast spreading and size. To explore the connection between reduced dermal fibroblast size and age-related elevation of HGF expression, we manipulate dermal fibroblast size, and cell-size dependent regulation of HGF was investigated by laser capture microdissection, immunostaining, capillary electrophoresis immunoassay, and quantitative RT-PCR. RESULTS: We found that reduced fibroblast size is responsible for age-related elevation of HGF expression. Further investigation indicated that cell size-dependent upregulation of HGF expression was mediated by impeded YAP/TAZ nuclear translocation and their target gene, CCN2. Conversely, restoration of dermal fibroblast size rapidly reversed cell-size-dependent upregulation of HGF in a YAP/TAZ-dependent manner. Finally, we confirmed that elevated HGF expression is accompanied by the reduced expression of YAP/TAZ and CCN2 in the aged human skin in vivo. CONCLUSION: Age-related elevation of HGF is driven by the reduction of fibroblast size in a YAP/TAZ/CCN2 axis-dependent manner. These data reveal a novel mechanism by which reduction of fibroblast size upregulates HGF expression, which in turn contributes to loss of collagen, a prominent feature of aged human skin.


Assuntos
Fibroblastos/patologia , Fator de Crescimento de Hepatócito/genética , Envelhecimento da Pele/genética , Pele/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso de 80 Anos ou mais , Biópsia , Tamanho Celular , Células Cultivadas , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cultura Primária de Células , Transdução de Sinais/genética , Pele/citologia , Pele/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Regulação para Cima , Proteínas de Sinalização YAP , Adulto Jovem
18.
J Invest Dermatol ; 141(4S): 1007-1016, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32800875

RESUMO

The aging process deleteriously alters the structure and function of dermal collagen. These alterations result in thinning, fragility, wrinkles, laxity, impaired wound healing, and a microenvironment conducive to cancer. However, the key factors responsible for these changes have not been fully elucidated, and relevant models for the study of skin aging progression are lacking. CCN1, a secreted extracellular matrix‒associated matricellular protein, is elevated in dermal fibroblasts in aged human skin. Toward constructing a mouse model to study the key factors involved in skin-aging progression, we demonstrate that transgenic mice, with selective expression of CCN1 in dermal fibroblasts (COL1A2-CCN1), display accelerated skin dermal aging. The aged phenotype in COL1A2-CCN1 mice resembles aged human dermis: the skin is wrinkled and the dermis is thin and composed of loose, disorganized, and fragmented collagen fibrils. These dermal alterations reflect reduced production of collagen due to impaired TGFß signaling and increased expression of matrix metalloproteinases driving the induction of c-Jun/activator protein-1. Importantly, similar mechanisms drive human dermal aging. Taken together, the data demonstrate that elevated expression of CCN1 by dermal fibroblasts functions as a key mediator of dermal aging. The COL1A2-CCN1 mouse model provides a novel tool for understanding and studying the mechanisms of skin aging and age-related skin disorders.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Derme/patologia , Fibroblastos/patologia , Envelhecimento da Pele , Animais , Células Cultivadas , Colágeno/metabolismo , Colágeno Tipo I/genética , Proteína Rica em Cisteína 61/genética , Derme/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Modelos Animais , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Regulação para Cima
19.
Mol Cell Endocrinol ; 530: 111296, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33915228

RESUMO

Adequate access to fresh or frozen normal adrenal tissue has been a primary limitation to the enhanced characterization of the adrenal zones via RNA sequencing (RNAseq). Herein, we describe the application of targeted RNAseq to formalin-fixed paraffin-embedded (FFPE) normal adrenal gland specimens. Immunohistochemistry (IHC) was used to visualize and guide the capture of the adrenocortical zones and medulla. Following IHC-based tissue capture and isolation of RNA, high-throughput targeted RNAseq highlighted clear transcriptomic differences and identified differentially expressed genes among the adrenal zones. Our data demonstrate the ability to capture FFPE adrenal zone tissue for targeted transcriptomic analyses. Future comparison of normal adrenal zones will improve our understanding of transcriptomic patterns and help identify potential novel pathways controlling zone-specific steroid production.


Assuntos
Córtex Suprarrenal/química , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Córtex Suprarrenal/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Inclusão em Parafina , Fixação de Tecidos
20.
J Investig Dermatol Symp Proc ; 14(1): 20-4, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19675548

RESUMO

UV radiation from the sun impacts skin health adversely through complex, multiple molecular pathways. Premature skin aging (photoaging) is among the most widely appreciated harmful effects of chronic exposure to solar UV radiation. Extensive damage to the dermal connective tissue is a hallmark of photoaged skin. Disruption of the normal architecture of skin connective tissue impairs skin function and causes it to look aged. UV irradiation induces expression of certain members of the matrix metalloproteinase (MMP) family, which degrade collagen and other extracellular matrix proteins that comprise the dermal connective tissue. Although the critical role of MMPs in photoaging is undeniable, important questions remain. This article summarizes our current understanding of the role of MMPs in the photoaging process and presents new data that (1) describe the expression and regulation by UV irradiation of all members of the MMP family in human skin in vivo and (2) quantify the relative contributions of epidermis and dermis to the expression of UV irradiation-induced MMPs in human skin in vivo.Journal of Investigative Dermatology Symposium Proceedings (2009) 14, 20-24; doi:10.1038/jidsymp.2009.8.


Assuntos
Metaloproteinases da Matriz/metabolismo , Envelhecimento da Pele/fisiologia , Epiderme/enzimologia , Epiderme/efeitos da radiação , Expressão Gênica/efeitos da radiação , Humanos , Metaloproteinases da Matriz/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/enzimologia , Pele/efeitos da radiação , Envelhecimento da Pele/genética , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA