RESUMO
BACKGROUND: The number of multigene-modified donor pigs for xenotransplantation is increasing with the advent of gene-editing technologies. However, it remains unclear which gene combination is suitable for specific organ transplantation. METHODS: In this study, we utilized CRISPR/Cas9 gene editing technology, piggyBac transposon system, and somatic cell cloning to construct GTKO/hCD55/hTBM/hCD39 four-gene-edited cloned (GEC) pigs and performed kidney transplantation from pig to rhesus monkey to evaluate the effectiveness of these GEC pigs. RESULTS: First, 107 cell colonies were obtained through drug selection, of which seven were 4-GE colonies. Two colonies were selected for somatic cell nuclear transfer (SCNT), resulting in seven fetuses, of which four were GGTA1 biallelic knockout. Out of these four, two fetuses had higher expression of hCD55, hTBM, and hCD39. Therefore, these two fetuses were selected for two consecutive rounds of cloning, resulting in 97 live piglets. After phenotype identification, the GGTA1 gene of these pigs was inactivated, and hCD55, hTBM, and hCD39 were expressed in cells and multiple tissues. Furthermore, the numbers of monkey IgM and IgG binding to the peripheral blood mononuclear cells (PBMCs) of the 4-GEC pigs were markedly reduced. Moreover, 4-GEC porcine PBMCs had greater survival rates than those from wild-type pigs through complement-mediated cytolysis assays. In pig-to-monkey kidney xenotransplantation, the kidney xenograft successfully survived for 11 days. All physiological and biochemical indicators were normal, and no hyperacute rejection or coagulation abnormalities were found after transplantation. CONCLUSION: These results indicate that the GTKO/hCD55/hTBM/hCD39 four-gene modification effectively alleviates immune rejection, and the pig kidney can functionally support the recipient monkey's life.
Assuntos
Animais Geneticamente Modificados , Galactosiltransferases , Edição de Genes , Transplante de Rim , Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Transplante de Rim/métodos , Suínos , Edição de Genes/métodos , Galactosiltransferases/genética , Sistemas CRISPR-Cas , Macaca mulatta , Técnicas de Transferência Nuclear , Xenoenxertos , Humanos , Sobrevivência de Enxerto/imunologia , Rejeição de Enxerto/imunologia , Apirase , Antígenos CDRESUMO
BACKGROUND: Infertility is a growing global health concern affecting millions of couples worldwide. Among several factors, an extreme body weight adversely affects reproductive functions. Leptin is a well-known adipokine that serves as an endocrine signal between adiposity and fertility. However, the exact mechanisms underlying the effects of high leptin level on female reproduction remain unclear. METHODS: Transgenic pigs overexpressing leptin (â) were produced by backcrossing and screened for leptin overexpression. The growth curve, fat deposition, reproductive performance, apoptosis, serum hormones and cholesterol production, RNA sequencing, and single-nucleus RNA sequencing (snRNA-seq) of the leptin-overexpressing pigs and wild-type group were evaluated. RESULTS: Transgenic pigs overexpressing leptin (â) were obtained, which exhibited significantly reduced body weight, body size, and back fat thickness. These pigs manifested a late onset of puberty (330 ± 54.3 vs. 155 ± 14.7 days), irregular estrous behavior characterized by increased inter-estrous interval (29.2 ± 0 vs. 21.3 ± 0.7 days), and more number of matings until pregnancy (at least 3 times). This reproductive impairment in leptin pigs was related to hormonal imbalances characterized by increased levels of FSH, LH, prolactin, E2, P4, and TSH, altered steroidogenesis such as increased levels of serum cholesterol esters along with steroidogenic markers (StAR, CYP19A), and ovarian dysfunctions manifested by neutrophilic infiltration and low expression of caspase-3 positive cells in the ovaries. Moreover, bulk RNA sequencing of the ovaries also revealed neutrophilic infiltration followed by upregulation of inflammation-related genes. Furthermore, snRNA-seq reflected that leptin overexpression triggered immune response, suppressed follicle development and luteinization, resulting in metabolic dysfunction and hormone imbalance in the ovary. CONCLUSIONS: Low body weight in leptin overexpressing pigs adversely affects the reproductive performance, causing delayed puberty, irregular estrous cycles, and reduced breeding efficiency. This is linked to metabolic imbalances, an increased immune response, and altered ovarian functions. This study provides a theoretical basis for the complex mechanisms underlying leptin, and infertility by employing leptin-overexpressing female pigs.
Assuntos
Animais Geneticamente Modificados , Leptina , Reprodução , Animais , Feminino , Leptina/sangue , Suínos , Reprodução/fisiologia , Modelos Animais de DoençasRESUMO
Interspecies somatic cell nuclear transfer (iSCNT) has an immense potential to rescue endangered animals and extinct species like mammoths. In this study, we successfully established an Asian elephant's fibroblast cell lines from ear tissues, performed iSCNT with porcine oocytes and evaluated the in vitro and in vivo development of reconstructed embryos. A total of 7780 elephant-pig iSCNT embryos were successfully reconstructed and showed in vitro development with cleavage rate, 4-cell, 8-cell and blastocyst rate of 73.01, 30.48, 5.64, and 4.73%, respectively. The total number of elephant-pig blastocyte cells and diameter of hatched blastocyte was 38.67 and 252.75 µm, respectively. Next, we designed species-specific markers targeting EDNRB, AGRP and TYR genes to verify the genome of reconstructed embryos with donor nucleus/species. The results indicated that 53.2, 60.8, and 60.8% of reconstructed embryos (n = 235) contained elephant genome at 1-cell, 2-cell and 4-cell stages, respectively. However, the percentages decreased to 32.3 and 32.7% at 8-cell and blastocyst stages, respectively. Furthermore, we also evaluated the in vivo development of elephant-pig iSCNT cloned embryos and transferred 2260 reconstructed embryos into two surrogate gilts that successfully became pregnant and a total of 11 (1 and 10) fetuses were surgically recovered after 17 and 19 days of gestation, respectively. The crown-rump length and width of elephant-pig cloned fetuses were smaller than the control group. Unfortunately, none of these fetuses contained elephant genomes, which suggested that elephant embryos failed to develop in vivo. In conclusion, we successfully obtained elephant-pig reconstructed embryos for the first time and these embryos are able to develop to blastocyst, but the in vivo developmental failure needs further investigated.
Assuntos
Clonagem de Organismos , Elefantes , Gravidez , Animais , Suínos , Feminino , Clonagem de Organismos/métodos , Elefantes/genética , Técnicas de Transferência Nuclear/veterinária , Oócitos/metabolismo , Blastocisto , Sus scrofa , Desenvolvimento Embrionário , Embrião de MamíferosRESUMO
Leptin is a well-known adipokine that plays critical role in adiposity. To further investigate the role of leptin in adiposity, we utilized leptin overexpressing transgenic pigs and evaluated the effect of leptin on growth and development, fat deposition, and lipid metabolism at tissue and cell level. Leptin transgenic pigs were produced and divided into two groups: elevated leptin expression (leptin ( +)) and normal leptin expression group (control). Results indicated that leptin ( +) pigs had elevated leptin protein and mRNA expression levels and exhibited sluggish growth and development followed by decreased subcutaneous fat thickness, low serum triglycerides, saturated, unsaturated fatty acids and high cholesterol esters (p < 0.05). There were differences in the lipid metabolism related genes at different fat depots, including upregulation of PPARγ, AGPAT6, PLIN2, HSL and ATGL in subcutaneous, PPARγ in perirenal, and FAT/CD36 and PLIN2 in mesenteric adipose tissues and downregulation of AGPAT6 and ATGL in perirenal and AGPAT6 in mesenteric adipose tissues (p < 0.05). Additionally, in-vitro cultured leptin ( +) preadipocytes exhibited upregulation of PPARγ, FAT/CD36, ACACA, AGPAT, PLIN2, ATGL and HSL as compared to control (p < 0.05). These findings suggested that homeostasis imbalance in lipolysis and lipogenesis at adipose tissue and adipocytes levels led to low subcutaneous fat depots in leptin overexpression pigs. These pigs can act as model for obesity and related metabolic disorder.
Assuntos
Leptina , PPAR gama , Tecido Adiposo/metabolismo , Animais , Leptina/genética , Leptina/metabolismo , Lipólise , Obesidade/genética , PPAR gama/genética , PPAR gama/metabolismo , PPAR gama/farmacologia , Suínos/genética , Triglicerídeos/genéticaRESUMO
Multiple genetic modification is necessary for successful xenotransplantation from pigs. However, multiple-genetically modified cells usually suffer from various drug selections and long-term in vitro culture, which have a poor performance for somatic cell nuclear transfer (SCNT) to produce genetically modified pigs. We used to generate GTKO/hCD55/hCD59 triple-gene modified pigs by using drug-selective cell lines for SCNT, but the majority of cloned pigs were transgenic-negative individuals. In this study, to improve the production efficiency of multiple genetically modified pigs, we performed the recloning process by using transgenic porcine fetal fibroblast cells. As a result, two fetuses expressing hCD55 and hCD59 were obtained from 12 live-cloned fetuses, and one carrying high transgene expression was selected as a source of donor cells for recloning. Then we obtained 12 cloned piglets, all GTKO and carrying hCD55 and hCD59. Both hCD55 and hCD59 were expressed in fibroblast cells, but the expression levels of hCD55 and hCD59 were different among these piglets. Furthermore, piglet P5# had the highest expression of hCD55 and hCD59 in fibroblast cells than other piglets. Correspondingly, fibroblast cells of piglet P5# had significantly higher resistance against human serum-mediated cytolysis than those of piglet P11#. In conclusion, our results firstly provide support for improving efficiency of generating multiple genetically modified pig by recloning.
Assuntos
Animais Geneticamente Modificados/genética , Antígenos CD55/genética , Antígenos CD59/genética , Feto/fisiologia , Fibroblastos/metabolismo , Galactosiltransferases/genética , Transgenes , Animais , Fibroblastos/citologia , Técnicas de Inativação de Genes , Humanos , Técnicas de Transferência Nuclear , Suínos , Porco Miniatura , Transplante HeterólogoRESUMO
BACKGROUND: Laron syndrome is an autosomal disease resulting from mutations in the growth hormone receptor (GHR) gene. The only therapeutic treatment for Laron syndrome is recombinant insulin-like growth factor I (IGF-I), which has been shown to have various side effects. The improved Laron syndrome models are important for better understanding the pathogenesis of the disease and developing corresponding therapeutics. Pigs have become attractive biomedical models for human condition due to similarities in anatomy, physiology, and metabolism relative to humans, which could serve as an appropriate model for Laron syndrome. METHODS: To further improve the GHR knockout (GHRKO) efficiency and explore the feasibility of precise DNA deletion at targeted sites, the dual-sgRNAs/Cas9 system was designed to target GHR exon 3 in pig fetal fibroblasts (PFFs). The vectors encoding sgRNAs and Cas9 were co-transfected into PFFs by electroporation and GHRKO cell lines were established by single cell cloning culture. Two biallelic knockout cell lines were selected as the donor cell line for somatic cell nuclear transfer for the generation of GHRKO pigs. The genotype of colonies, cloned fetuses and piglets were identified by T7 endonuclease I (T7ENI) assay and sequencing. The GHR expression in the fibroblasts and piglets was analyzed by confocal microscopy, quantitative polymerase chain reaction (q-PCR), western blotting (WB) and immunohistochemical (IHC) staining. The phenotype of GHRKO pigs was recapitulated through level detection of IGF-I and glucose, and measurement of body weight and body size. GHRKO F1 generation were generated by crossing with wild-type pigs, and their genotype was detected by T7ENI assay and sequencing. GHRKO F2 generation was obtained via self-cross of GHRKO F1 pigs. Their genotypes of GHRKO F2 generation was also detected by Sanger sequencing. RESULTS: In total, 19 of 20 single-cell colonies exhibited biallelic modified GHR (95%), and the efficiency of DNA deletion mediated by dual-sgRNAs/Cas9 was as high as 90% in 40 GHR alleles of 20 single-cell colonies. Two types of GHR allelic single-cell colonies (GHR-47/-1, GHR-47/-46) were selected as donor cells for the generation of GHRKO pigs. The reconstructed embryos were transferred into 15 recipient gilts, resulting in 15 GHRKO newborn piglets and 2 fetuses. The GHRKO pigs exhibited slow growth rates and small body sizes. From birth to 13 months old, the average body weight of wild-type pigs varied from 0.6 to 89.5 kg, but that of GHRKO pigs varied from only 0.9 to 37.0 kg. Biochemically, the knockout pigs exhibited decreased serum levels of IGF-I and glucose. Furthermore, the GHRKO pigs had normal reproduction ability, as eighteen GHRKO F1 piglets were obtained via mating a GHRKO pig with wild-type pigs and five GHRKO F2 piglets were obtained by self-cross of F1 generation, indicating that modified GHR alleles can pass to the next generation via germline transmission. CONCLUSION: The dual-sgRNAs/Cas9 is a reliable system for DNA deletion and that GHRKO pigs conform to typical phenotypes of those observed in Laron patients, suggesting that these pigs could serve as an appropriate model for Laron syndrome.
Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Síndrome de Laron/patologia , Técnicas de Transferência Nuclear , RNA Guia de Cinetoplastídeos/metabolismo , Receptores da Somatotropina/metabolismo , Animais , Sequência de Bases , DNA/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Feto/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células Germinativas/metabolismo , Crescimento e Desenvolvimento , SuínosRESUMO
BACKGROUND: Pigs have many features that make them attractive as biomedical models for various diseases, including cancer. P53 is an important tumor suppressor gene that exerts a central role in protecting cells from oncogenic transformation and is mutated in a large number of human cancers. P53 mutations occur in almost every type of tumor and in over 50% of all tumors. In a recent publication, pigs with a mutated P53 gene were generated that resulted in lymphoma and renal and osteogenic tumors. However, approximately 80% of human tumors have dysfunctional P53. A P53-deficient pig model is still required to elucidate. METHODS: Transcription activator-like effector nucleases (TALENs) were designed to target porcine P53 exon 4. The targeting activity was evaluated using a luciferase SSA recombination assay. P53 biallelic knockout (KO) cell lines were established from single-cell colonies of fetal fibroblasts derived from Diannan miniature pigs followed by electroporation with TALENs plasmids. One cell line was selected as the donor cell line for somatic cell nuclear transfer (SCNT) for the generation of P53 KO pigs. P53 KO stillborn fetuses and living piglets were obtained. Gene typing of the collected cloned individuals was performed by T7EI assay and sequencing. Fibroblast cells from Diannan miniature piglets with a P53 biallelic knockout or wild type were analyzed for the P53 response to doxorubicin treatment by confocal microscopy and western blotting. RESULTS: The luciferase SSA recombination assay revealed that the targeting activities of the designed TALENs were 55.35-fold higher than those of the control. Eight cell lines (8/19) were mutated for P53, and five of them were biallelic knockouts. One of the biallelic knockout cell lines was selected as nuclear donor cells for SCNT. The cloned embryos were transferred into five recipient gilts, three of them becoming pregnant. Five live fetuses were obtained from one surrogate by caesarean section after 38 days of gestation for genotyping. Finally, six live piglets and one stillborn piglet were collected from two recipients by caesarean section. Sequencing analyses of the target site confirmed the P53 biallelic knockout in all fetuses and piglets, consistent with the genotype of the donor cells. The qPCR analysis showed that the expression of the P53 mRNA had significant reduction in various tissues of the knockout piglets. Furthermore, confocal microscopy and western blotting analyses demonstrated that the fibroblast cells of Diannan miniature piglets with a P53 biallelic knockout were defective in mediating DNA damage when incubated with doxorubicin. CONCLUSION: TALENs combined with SCNT was successfully used to generate P53 KO Diannan miniature pigs. Although these genetically engineered Diannan miniature pigs had no tumorigenic signs, the P53 gene was dysfunctional. We believe that these pigs will provide powerful new resources for preclinical oncology and basic cancer research.
Assuntos
Alelos , Técnicas de Inativação de Genes , Técnicas de Transferência Nuclear , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Feto/citologia , Fibroblastos/metabolismo , Mutação/genética , Fenótipo , Reprodutibilidade dos Testes , Suínos , Porco MiniaturaRESUMO
BACKGROUND: α1,3-Galactosyltransferase (GGTA1) is essential for the biosynthesis of glycoproteins and therefore a simple and effective target for disrupting the expression of galactose α-1,3-galactose epitopes, which mediate hyperacute rejection (HAR) in xenotransplantation. Miniature pigs are considered to have the greatest potential as xenotransplantation donors. A GGTA1-knockout (GTKO) miniature pig might mitigate or prevent HAR in xenotransplantation. METHODS: Transcription activator-like effector nucleases (TALENs) were designed to target exon 6 of porcine GGTA1 gene. The targeting activity was evaluated using a luciferase SSA recombination assay. Biallelic GTKO cell lines were established from single-cell colonies of fetal fibroblasts derived from Diannan miniature pigs following transfection by electroporation with TALEN plasmids. One cell line was selected as donor cell line for somatic cell nuclear transfer (SCNT) for the generation of GTKO pigs. GTKO aborted fetuses, stillborn fetuses and live piglets were obtained. Genotyping of the collected cloned individuals was performed. The Gal expression in the fibroblasts and one piglet was analyzed by fluorescence activated cell sorting (FACS), confocal microscopy, immunohistochemical (IHC) staining and western blotting. RESULTS: The luciferase SSA recombination assay revealed that the targeting activities of the designed TALENs were 17.1-fold higher than those of the control. Three cell lines (3/126) showed GGTA1 biallelic knockout after modification by the TALENs. The GGTA1 biallelic modified C99# cell line enabled high-quality SCNT, as evidenced by the 22.3 % (458/2068) blastocyst developmental rate of the reconstructed embryos. The reconstructed GTKO embryos were subsequently transferred into 18 recipient gilts, of which 12 became pregnant, and six miscarried. Eight aborted fetuses were collected from the gilts that miscarried. One live fetus was obtained from one surrogate by caesarean after 33 d of gestation for genotyping. In total, 12 live and two stillborn piglets were collected from six surrogates by either caesarean or natural birth. Sequencing analyses of the target site confirmed the homozygous GGTA1-null mutation in all fetuses and piglets, consistent with the genotype of the donor cells. Furthermore, FACS, confocal microscopy, IHC and western blotting analyses demonstrated that Gal epitopes were completely absent from the fibroblasts, kidneys and pancreas of one GTKO piglet. CONCLUSIONS: TALENs combined with SCNT were successfully used to generate GTKO Diannan miniature piglets.
Assuntos
Galactosiltransferases/genética , Técnicas de Inativação de Genes/métodos , Técnicas de Transferência Nuclear , Porco Miniatura/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Animais , Animais Geneticamente Modificados , Western Blotting , Feminino , Fibroblastos/metabolismo , Galactosiltransferases/metabolismo , Genótipo , Rejeição de Enxerto/prevenção & controle , Imuno-Histoquímica , Rim/metabolismo , Microscopia Confocal , Pâncreas/metabolismo , Gravidez , Suínos , Transplante HeterólogoRESUMO
Dystrophinopathy, including Duchenne muscle dystrophy (DMD) and Becker muscle dystrophy (BMD) is an incurable X-linked hereditary muscle dystrophy caused by a mutation in the DMD gene in coding dystrophin. Advances in further understanding DMD/BMD for therapy are expected. Studies on mdx mice and dogs with muscle dystrophy provide limited insight into DMD disease mechanisms and therapeutic testing because of the different pathological manifestations. Miniature pigs share similar physiology and anatomy with humans and are thus an excellent animal model of human disease. Here, we successfully achieved precise DMD targeting in Chinese Diannan miniature pigs by co-injecting zygotes with Cas9 mRNA and sgRNA targeting DMD. Two piglets were obtained after embryo transfer, one of piglets was identified as DMD-modified individual via traditional cloning, sequencing and T7EN1 cleavage assay. An examination of targeting rates in the DMD-modified piglet revealed that sgRNA:Cas9-mediated on-target mosaic mutations were 70% and 60% of dystrophin alleles in skeletal and smooth muscle, respectively. Meanwhile, no detectable off-target mutations were found, highlighting the high specificity of genetic modification using CRISPR/Cas9. The DMD-modified piglet exhibited degenerative and disordered phenotypes in skeletal and cardiac muscle, and declining thickness of smooth muscle in the stomach and intestine. In conclusion, we successfully generated myopathy animal model by modifying the DMD via CRISPR/Cas9 system in a miniature pig.
Assuntos
Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/metabolismo , Zigoto/metabolismo , Alelos , Animais , Sequência de Bases , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Transferência Embrionária , Genótipo , Imuno-Histoquímica , Microscopia de Fluorescência , Músculo Esquelético/metabolismo , Músculo Liso/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mutação , Fenótipo , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Suínos , Porco MiniaturaRESUMO
Considerable improvements in sheep multiple ovulation and embryo transfer (MOET)protocols have been made; however, unlike for cattle, MOET is poorly developed in sheep, and thus has not been broadly applicable as a routine procedure. The tightly folded nature of the ewe cervix, the inconsistent ovarian response to various superovulatory treatments, and the requirement of labor to handle animals, particularly during large-scale production, has limited the implementation of successful MOET in sheep. Moreover, several extrinsic factors (e.g., sources, the purity of gonadotrophins and their administration) and intrinsic factors (e.g., breed, age, nutrition, reproductive status) severely limit the practicability of MOET in sheep and other domestic animals. In this review, we summarize the effects of different superovulatory protocols, and their respective ovarian responses, in terms of ovulation rate, and embryo recovery and transfer. Furthermore, various strategies, such as inhibin immunization, conventional superovulation protocols, and melatonin implants for improving the ovarian response, are discussed in detail. Other reproductive techniques and their relative advantages and disadvantages, such as artificial insemination (AI), and donor embryo recovery and transfer to the recipient through different procedures, which must be taken into consideration for achieving satisfactory results during any MOET program in sheep, are also summarized in this article.
RESUMO
Triplenegative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and it often becomes resistant to paclitaxel (PTX) therapy. Autophagy plays an important cytoprotective role in PTXinduced tumor cell death, and targeting autophagy has been promising for improving the efficacy of tumor chemotherapy in recent years. The aim of the present study was to clarify the mechanism of PTX inducing autophagy in TNBC cells to provide a potential clinical chemotherapy strategy of PTX for TNBC. The present study reported that PTX induced both apoptosis and autophagy in MDAMB231 cells and that inhibition of autophagy promoted apoptotic cell death. Furthermore, it was found that forkhead box transcription factor O1 (FOXO1) enhanced PTXinduced autophagy through a transcriptional activation pattern in MDAMB231 cells, which was associated with the downstream target genes autophagy related 5, class III phosphoinositide 3kinase vacuolar protein sorting 34, autophagy related 4B cysteine peptidase, beclin 1 and microtubule associated protein 1 light chain 3ß. Knocking down FOXO1 attenuated the survival of MDAMB231 cells in response to PTX treatment. These findings may be beneficial for improving the treatment efficacy of PTX and to develop autophagic targeted therapy for TNBC.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Cisteína Endopeptidases/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteína Forkhead Box O1/genética , Humanos , Proteínas Associadas aos Microtúbulos/metabolismoRESUMO
Provincially Administered Tribal Areas (PATA) of Punjab-Pakistan are comprised of hilly mountains with small ruminants as a sole source of income. In this study, farming practices, productivity, health and the economic value of sheep were evaluated in PATA through a survey of farmers (n = 138) holding 11,558 heads of sheep. Out of a total population, 87% were non-descriptive flocks, and 9% and 4% were purebred flocks belonging to the Kajli and Thali populations, respectively. Sheep flocks were mainly (86%) reared under the traditional production system and had a delayed onset of puberty. There was low influence of season on the reproduction, and the majority of flocks (78%) were bred throughout the year. The lack of proper vaccination and poor management exposed the flocks to bacterial, viral and parasitic infections, which lead to high mortality in lambs (~22%) and adults (~32%). The share of sheep in farmers livelihood was 42%, and only 20% of producers' living standard was improved with sheep farming, but the rise in rearing more sheep was quite low (20%). Although the livestock department arranged farmers' training, the majority of farmers (83%) never participated in training and had no knowledge of modern technologies. Collectively, the traditional sheep production systems, poor management, lack of vaccination, marketing channels and farmers training hampered the sheep rearing and producers' livelihood in the PATA of Punjab-Pakistan. However, developing model livestock farms, conducting farmer training, establishing a viable market for dairy products, and introducing subsidy policy interventions can improve the sheep farming in these areas.
RESUMO
As a member of the PIKs family, PIK3C3 participates in autophagy and plays a central role in liver function. Several studies demonstrated that the complete suppression of PIK3C3 in mammals can cause hepatomegaly and hepatosteatosis. However, the function of PIK3C3 overexpression on the liver and other organs is still unknown. In this study, we successfully generated PIK3C3 transgenic pigs through somatic cell nuclear transfer (SCNT) by designing a specific vector for the overexpression of PIK3C3. Plasmid identification was performed through enzyme digestion and transfected into the fetal fibroblasts derived from Diannan miniature pigs. After 2 weeks of culturing, six positive colonies obtained from a total of 14 cell colonies were identified through PCR. One positive cell line was selected as the donor cell line for SCNT for the construction of PIK3C3transgenic pigs. Thirty single blastocysts were collected and identified as PIK3C3 transgenic-positive blastocysts. Two surrogates became pregnant after transferring the reconstructed embryos into four surrogates. Fetal fibroblasts of PIK3C3-positive fetuses identified through PCR were used as donor cells for SCNT to generate PIK3C3 transgenic pigs. To further explore the function of PIK3C3 overexpression, genotyping and phenotyping of the fetuses and piglets obtained were performed by PCR, immunohistochemical, HE, and apoptosis staining. The results showed that inflammatory infiltration and vacuolar formation in hepatocytes and apoptotic cells, and the mRNA expression of NF-κB, TGF-ß1, TLR4, TNF-α, and IL-6 significantly increased in the livers of PIK3C3 transgenic pigs when compared with wild-type (WT) pigs. Immunofluorescence staining showed that LC3B and LAMP-1-positive cells increased in the livers of PIK3C3 transgenic pigs. In the EBSS-induced autophagy of the porcine fibroblast cells (PFCs), the accumulated LC3II protein was cleared faster in PIK3C3 transgenic (PFCs) thanWT (PFCs). In conclusion, PIK3C3 overexpression promoted autophagy in the liver and associated molecular mechanisms related to the activation of ULK1, AMBR1, DRAM1, and MTOR, causing liver damage in pigs. Therefore, the construction of PIK3C3 transgenic pigs may provide a new experimental animal resource for liver diseases.
RESUMO
Human hepatocyte transplantation for liver disease treatment have been hampered by the lack of quality human hepatocytes. Pigs with their large body size, longevity and physiological similarities with human are appropriate animal models for the in vivo expansion of human hepatocytes. Here we report on the generation of RAG2-/-IL2Rγ-/YFAH-/- (RGFKO) pigs via CRISPR/Cas9 system and somatic cell nuclear transfer. We showed that thymic and splenic development in RGFKO pigs was impaired. V(D)J recombination processes were also inactivated. Consequently, RGFKO pigs had significantly reduced numbers of porcine T, B and NK cells. Moreover, due to the loss of FAH, porcine hepatocytes continuously undergo apoptosis and consequently suffer hepatic damage. Thus, RGFKO pigs are both immune deficient and constantly suffer liver injury in the absence of NTBC supplementation. These results suggest that RGFKO pigs have the potential to be engrafted with human hepatocytes without immune rejection, thereby allowing for large scale expansion of human hepatocytes.
Assuntos
Modelos Animais de Doenças , Hepatopatias , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Técnicas de Inativação de Genes , Hepatócitos , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Proteínas Nucleares/genética , Suínos , Porco MiniaturaRESUMO
Considerable advancements have recently been achieved in porcine somatic cell nuclear transfer (SCNT), but the efficiency remains low. Donor cell size might play an important role in SCNT, but its effects in pigs remain unclear. This study aimed to evaluate the efficiency of porcine SCNT by selecting donor cells of suitable size. Porcine fetal fibroblasts (PFFs) were divided into three groups, group S (small, d ≤ 13 µm), group M (medium, 13 µm
Assuntos
Blastocisto , Técnicas de Transferência Nuclear , Animais , Blastocisto/metabolismo , Tamanho Celular , Clonagem de Organismos , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Feto , Fibroblastos/metabolismo , Gravidez , SuínosRESUMO
The base editing 3 (BE3) system, a single-base gene editing technology developed using CRISPR/Cas9n, has a broad range of applications for human disease model construction and gene therapy, as it is highly efficient, accurate, and non-destructive. P53 mutations are present in more than 50% of human malignancies. Due to the similarities between humans and pigs at the molecular level, pig models carrying P53 mutations can be used to research the mechanism of tumorigenesis and improve tumor diagnosis and treatment. According to pathogenic mutations of the human P53 gene at W146* and Q100*, sgRNAs were designed to target exon 4 and exon 5 of the porcine P53 gene. The target editing efficiencies of the two sgRNAs were 61.9% and 50.0%, respectively. The editing efficiency of the BE3 system was highest (about 60%) when C (or G) was at the 5th base. Puromycin screening revealed that 75.0% (21/28) and 68.7% (22/32) of cell colonies contained a P53 mutation at sgRNA-Exon5 and sgRNA-Exon4, respectively. The reconstructed embryos from sgRNA-Exon5-5# were transferred into six recipient gilts, all of which aborted. The reconstructed embryos from sgRNA-Exon4-7# were transferred into 6 recipient gilts, 3 of which became pregnant, resulting in 14 live and 3 dead piglets. Sequencing analyses of the target site confirmed 1 P53 monoallelic mutation and 16 biallelic mutations. The qPCR analysis showed that the P53 mRNA expression level was significantly decreased in different tissues of the P53 mutant piglets (p < 0.05). Additionally, confocal microscopy and western blot analysis revealed an absence of P53 expression in the P53 mutant fibroblasts, livers, and lung tissues. In conclusion, a porcine cancer model with a P53 point mutation can be obtained via the BE3 system and somatic cell nuclear transfer (SCNT).
RESUMO
Leptin is an important adipokine and plays a vital role in animals. However, the role of leptin in the autophagic response of pig fibroblast cells (PFCs) has not been fully elucidated. In this study, we investigated the relationship between leptin and autophagy as well as underlying molecular basis. We found that PFCs treated with EBSS could secrete leptin, and the leptin concentration in the supernatant of leptin transgenic PFCs was higher than that of WT PFCs. We found an increase in LC3-II protein level and a decrease in p62 protein level in treated leptin transgenic PFCs compared with treated WT PFCs. Meanwhile, we observed an increase of autophagosomes by transmission electron microscopy and an enhancement of the accumulation of LC3 puncta in the cytoplasm of treated leptin transgenic PFCs, and these effects were further augmented by Baf A1 treatment. Furthermore, we detected the expression levels of 7 autophagy signaling pathway genes and 17 autophagy-related (ATG) genes by q-PCR. We found that between the two types of EBSS-treated cells 3 genes expression pattern were significantly different among the 7 autophagy signaling pathway genes and 8 genes expression pattern were significantly differernt among the ATG genes. These results indicated that leptin may promote autophagy and involving the downregulation of FOXO1 and LMNA genes via an unknown pathway which causes the upregulation of the 4 genes and the downregulation of 4 genes.
RESUMO
Pig-to-human organ transplantation has drawn attention in recent years due to the potential use of pigs as an alternative source of human donor organs. While GGTA1 knockout (GTKO) can protect xenografts from hyperacute rejection, complement-dependent cytotoxicity might still contribute to this type of rejection. To prolong the xenograft survival, we utilized a T2A-mediated pCMV-hCD55-T2A-hCD59-Neo vector and transfected the plasmid into GTKO Diannan miniature pig fetal fibroblasts. After G418 selection combined with single-cell cloning culture, four colonies were obtained, and three of these were successfully transfected with the hCD55 and hCD59. One of the three colonies was selected as donor cells for somatic cell nuclear transfer (SCNT). Then, the reconstructed embryos were transferred into eight recipient gilts, resulting in four pregnancies. Three of the pregnant gilts delivered, yielding six piglets. Only one piglet carried hCD55 and hCD59 genetic modification. The expression levels of the GGTA1, hCD55, and hCD59 in the tissues and fibroblasts of the piglet were determined by q-PCR, fluorescence microscopy, immunohistochemical staining, and western blotting analyses. The results showed the absence of GGTA1 and the coexpression of the hCD55 and hCD59. However, the mRNA expression levels of hCD55 and hCD59 in the GTKO/hCD55/hCD59 pig fibroblasts were lower than that in human 293T cells, which may be caused by low copy number and/or CMV promoter methylation. Furthermore, we performed human complement-mediated cytolysis assays using human serum solutions from 0 to 60%. The result showed that the fibroblasts of this triple-gene modified piglet had greater survival rates than that of wild-type and GTKO controls. Taken together, these results indicate that T2A-mediated polycistronic vector system combined with SCNT can effectively generate multiplex genetically modified pigs, additional hCD55 and hCD59 expression on top of a GTKO genetic background markedly enhance the protective effect towards human serum-mediated cytolysis than those of GTKO alone. Thus, we suggest that GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pig will be a more eligible donor for xenotransplantation.
Assuntos
Antígenos CD55/genética , Antígenos CD59/genética , Galactosiltransferases/deficiência , Vetores Genéticos/genética , Técnicas de Transferência Nuclear , Peptídeos/genética , Animais , Animais Geneticamente Modificados , Antígenos CD55/imunologia , Antígenos CD55/metabolismo , Antígenos CD59/imunologia , Antígenos CD59/metabolismo , Ensaio de Atividade Hemolítica de Complemento , Feminino , Fibroblastos/metabolismo , Galactosiltransferases/metabolismo , Expressão Gênica , Humanos , Peptídeos/química , Gravidez , RNA Mensageiro/metabolismo , Suínos , Porco Miniatura/genética , Distribuição Tecidual , Transplante HeterólogoRESUMO
Paclitaxel (PTX) is a natural alkaloid isolated from the bark of a tree, Taxus brevifolia, and is currently used to treat a variety of tumors. Recently, it has been found that low-dose PTX is a promising treatment for some cancers, presenting few side effects. However, antitumor mechanisms of low-dose PTX (<1 nM) have rarely been illuminated. Here we report a new antitumor mechanism of low-dose PTX in colorectal carcinoma cells. We treated colorectal carcinoma HCT116 cells with PTX at 0.1 and 0.3 nM for 0, 1, 2, or 3 days, and found that low-dose PTX inhibits cell growth without altering cell morphology and cell cycle. There was a significant decrease of pH in culture media with 0.3 nM PTX for 3 days. Also, lactate production was significantly increased in a dose- and time-dependent manner. Furthermore, expression of glutaminolysis-related genes GLS, SLC7A11 and SLC1A5 were significantly decreased in the colorectal carcinoma cells treated with low-dose PTX. Meanwhile, protein expression levels of p53 and p21 increased significantly in colorectal carcinoma cells so treated. In summary, low-dose PTX down-regulated glutaminolysis-related genes and increased their lactate production, resulting in decreased pH of tumor microenvironments and inhibition of tumor cell growth. Up-regulation of p53 and p21 in colorectal carcinoma cells treated with low-dose PTX also contributed to inhibition of tumor cell growth.
RESUMO
Xenotransplantation is a promising strategy to alleviate the shortage of organs for human transplantation. In addition to the concerns about pig-to-human immunological compatibility, the risk of cross-species transmission of porcine endogenous retroviruses (PERVs) has impeded the clinical application of this approach. We previously demonstrated the feasibility of inactivating PERV activity in an immortalized pig cell line. We now confirm that PERVs infect human cells, and we observe the horizontal transfer of PERVs among human cells. Using CRISPR-Cas9, we inactivated all of the PERVs in a porcine primary cell line and generated PERV-inactivated pigs via somatic cell nuclear transfer. Our study highlights the value of PERV inactivation to prevent cross-species viral transmission and demonstrates the successful production of PERV-inactivated animals to address the safety concern in clinical xenotransplantation.