Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 330: 117167, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584457

RESUMO

Clinoptilolite based zeolite-geopolymer foams (abbreviated as CFs) were prepared from natural clinoptilolite and calcined clinoptilolite, using H2O2 solution as pore former through a straightforward process. Natural clinoptilolite and CFs are characterized by analytical techniques including optical microscope, XRF, FTIR, XRD, BET, MIP and SEM. The obtained CFs possesses micropores of zeolite and meso/macropores of geopolymer matrix. The porosities range from 66.7 to 69.5%. Clinoptilolite (partially dissolved) and impurity minerals (montmorillonite, illite and albite) contribute to the formation of geopolymer. CFs shows a good static sorption performance for toxic heavy metals at pH = 5 and sorption time of 24 h. Results show that the adsorption amount of CFs for Cr3+, Pb2+, Ni2+, Cu2+ and Cd2+ in the 50 mg/L working solutions are 6.21 mg/g, 6.11-6.13 mg/g, 5.92-6.07 mg/g, 5.53-5.93 mg/g and 5.44-5.79 mg/g, respectively. In addition, CFs could reach a high removal rate (Cr removal rate >80% and Cd > 60%) for different heavy metals after three cycles. The elimination order of toxic metals is Cr3+ > Pb2+ > Ni2+ > Cu2+ > Cd2+. The sequence is in accordance with Hard-Soft-Acid-Base principle, it is also related to the speciation and the ionic radii of the hydrated metal ions. This research provides a feasible approach for preparation of promising foams sorbent based on natural zeolite for wastewater management.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Zeolitas , Humanos , Zeolitas/química , Cádmio/química , Peróxido de Hidrogênio , Chumbo , Metais Pesados/química , Adsorção , Íons , Poluentes Químicos da Água/química
2.
RSC Adv ; 10(45): 26813-26823, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515759

RESUMO

Polypropylene-based cerium wet catalytic materials (Ce/PPNW-g-PAA) were prepared through ultraviolet grafting and ion exchange technology. They were used as effective and reusable heterogeneous catalysts for rhodamine B (RhB) degradation. The physicochemical properties of Ce/PPNW-g-PAA were characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), specific surface area measurements (BET), and X-ray photoelectron spectroscopy (XPS). The catalytic capacity of the Ce/PPNW-g-PAA-H2O2 system for the removal of RhB was tested in comparison with several other systems, which demonstrated that Ce/PPNW-g-PAA effectively promoted the oxidation and degradation of RhB by catalytic wet H2O2 oxidation. The results of the RhB degradation showed that Ce/PPNW-g-PAA exhibited excellent degradation performance by achieving a high removal rate for RhB (97.5%) at an initial RhB concentration of 100 mg L-1, H2O2 dosage of 5.0 mmol, Ce/PPNW-g-PAA dosage of 0.15 g L-1, and initial pH of 5.0 at 298 K. The degradation of RhB by Ce/PPNW-g-PAA conformed to the first-order kinetic reaction model. Consecutive experiments performed with the Ce/PPNW-g-PAA sample showed little activity decay, further confirming the high stability of the catalyst. In addition, the possible degradation mechanism of RhB was also investigated by XPS and electron paramagnetic resonance. The results suggested that Ce3+ and hydroxyl radical played important roles during the RhB degradation process.

3.
Anal Chim Acta ; 1110: 11-18, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32278385

RESUMO

The analysis of siliceous matrix samples may adopt a two-step pretreatment, which includes melting with ammonium hydrogen fluoride and redissolving with nitric acid. However, the residual of substrate silicon unfavorable to the determination of trace elements in the samples due to serious matrix effects. Here, a new digestion method using simultaneously both ammonium bifluoride and nitric acid under normal pressure was developed for high-purity quartz sand sample. The digestion pretreatment is a two step process: melting/dissolving with both ammonium bifluoride and nitric acid at 200 °C for 2 h, and evaporating the solution at 250 °C to dryness. As confirmed by XRD analysis, silicates in the sample were converted to (NH4)3SiF6NO3 in the melting/dissolving step. TGA analysis shows that the generated (NH4)3SiF6NO3 could be decomposed and evaporated completely at 250 °C, which ensured a complete removal of silicon by the followed evaporation of the solution at 250 °C. As a result, the followed ICP-OES and ICP-MS analysis needed a solution dilution of only 100 times for the determination of Ca, Mg, Al, Rb, Ba, REE and other trace elements. The new method was applied to the analysis of three certified reference materials, and the results were well consistent with the standard value with RSD% values between 0.62% and 9.73%. Therefore, this method can be applied to the analysis of trace elements in high purity silica-based samples, with the advantages of time-saving, small dilution factor (only 100 times) and low detection limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA