RESUMO
Cordyceps, a parasitic complex of the fungus Ophiocordyceps sinensis (Berk.) (Hypocreales: Ophiocordycipitaceae) and the ghost moth Thitarodes (Lepidoptera: Hepialidae), is a historical ethnopharmacological commodity in China. Recently, artificial cultivation of Chinese cordyceps has been established to supplement the dwindling natural resources. However, much is unknown between the natural and cultivated products in terms of nutritional aspect, which may provide essential information for quality evaluation. The current study aims to determine the metabolic profiles of 17 treatments from 3 sample groups including O. sinensis fungus, Thitarodes insect and cordyceps complex, using Gas Chromatography - Quadrupole Time-of-Flight Mass Spectrometry. A total of 98 metabolites were detected, with 90 of them varying in concentrations among groups. The tested groups could be separated, except that fungal fruiting body was clustered into the same group as Chinese cordyceps. The main distinguishing factors for the groups studied were the 24 metabolites involved in numerous different metabolic pathways. In conclusion, metabolomics of O. sinensis and its related products were determined mainly by the fruiting bodies other than culture methods. Our results suggest that artificially cultured fruiting bodies and cordyceps may share indistinguishable metabolic functions as the natural ones.
RESUMO
The entomopathogenic fungus Cordyceps militaris is a valuable medicinal ascomycete, which degenerates frequently during subsequent culture. To avoid economic losses during industrialized production, scratching stimuli of mycelia was introduced to improve the fruiting body production. The present results indicated that higher yields and biological efficiency were obtained from two degenerate strains (YN1-14 and YN2-7) but not from g38 (an insertional mutant in Rhf1 gene with higher yields and shorter growth periods). Furthermore, the growth periods of the fruiting bodies were at least 5 days earlier when the mycelia were scratched before stromata differentiation. Three ROS-scavenging genes including Cu/Zn superoxide dismutase (CmSod1), Glutathione peroxidase (CmGpx), and Catalase A (CmCat A) were isolated and their expression profiles against scratching were determined in degenerate strain YN1-14 and mutant strain g38. At day 5 after scratching, the expression level of CmGpx significantly decreased for strain g38, but that of CmSod1 significantly increased for YN1-14. These results indicated that scratching is an effective way to promote fruiting body production of degenerate strain, which may be related at least with Rhf1 and active oxygen scavenging genes.
RESUMO
OBJECTIVE: To investigate the preventive effect of ethyl pyruvate (EP) on peroxidation injury to intestinal mucosa in rats with severe abdominal infection. METHODS: Thirty-six SD rats were divided randomly into three groups (n=30 in each group): control group (laparotomy only), infection group [cecal ligation and puncture (CLP) was performed to reproduce severe abdominal infection model] and EP group (CLP plus 40 mg/kg EP subcutaneous injection, once per 8 hours). The changes in intestinal mucosa pathologic score were observed, and malondialdehyde (MDA) and myeloperoxidase (MPO) activities in intestinal tissue, and serum MDA levels were determined at postoperative 24 and 48 hours. RESULTS: Inflammation of small intestine mucosa was more severe in the infection group than in EP group, and the pathologic scores were lower in EP group than those of the infection group at post-CLP 24 and 48 hours (all P<0.05). There was a significant positive correlation between the intestinal and plasma MDA in the infection group (r=0.867, P<0.05). The MDA and MPO levels in intestinal tissue and serum were higher in the infection group than in EP group and control group (all P<0.05). CONCLUSION: With severe intraperitoneal infection in rats, the intestinal mucosa is damaged by the reactive oxygen species. EP could ameliorate the injury of intestinal mucosa by attenuating the injurious effects of the reactive oxygen species.
Assuntos
Cavidade Abdominal , Infecções/patologia , Mucosa Intestinal/patologia , Piruvatos/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Infecções/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/sangue , Malondialdeído/metabolismo , Peroxidase/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-DawleyRESUMO
A mutant library of Cordyceps militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation and screened for degradation features. Six mutants with altered characters in in vitro and in vivo fruiting body production, and cordycepin formation were found to contain a single copy T-DNA. T-DNA flanking sequences of these mutants were identified by thermal asymmetric interlaced-PCR approach. ATP-dependent helicase, cytochrome oxidase subunit I and ubiquitin-like activating enzyme were involved in in vitro fruiting body production, serine/threonine phosphatase involved in in vivo fruiting body production, while glucose-methanol-choline oxidoreductase and telomerase reverse transcriptase involved in cordycepin formation. These genes were analyzed by bioinformatics methods, and their molecular function and biology process were speculated by Gene Ontology (GO) analysis. The results provided useful information for the control of culture degeneration in commercial production of C. militaris.