Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Environ Sci Technol ; 58(2): 1399-1409, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165309

RESUMO

Graphene oxide (GO) membranes enabled by subnanosized diffusion channels are promising to separate small species in membrane distillation (MD). However, the challenge of effectively excluding small volatiles in MD persists due to the severe swelling and subsequent increase in GO interlamination spacing upon direct contact with the hot feed. To address this issue, we implemented a design in which a polymer is confined between the GO interlaminations, creating predominantly 2D nanochannels centered around 0.57 nm with an average membrane pore size of 0.30 nm. Compared to the virginal GO membrane, the polymer-intercalated GO membrane exhibits superior antiswelling performance, particularly at a high feed temperature of 60 °C. Remarkably, the modified membrane exhibited a high flux of approximately 52 L m-2 h-1 and rejection rates of about 100% for small ions and 98% for volatile phenol, with a temperature difference of 40 °C. Molecular dynamics simulations suggest that the sieving mechanisms for ions and volatiles are facilitated by the narrowed nanochannels within the polymer network situated between the 2D nanochannels of GO interlaminations. Concurrently, the unrestricted permeation of water molecules through the multinanochannel GO membrane encourages high-flux desalination of complex hypersaline wastewater.


Assuntos
Destilação , Grafite , Polímeros , Difusão , Água
2.
Environ Res ; 262(Pt 2): 119888, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216736

RESUMO

Low pressure membrane takes a great role in hydraulic fracturing wastewater (HFW), while membrane fouling is a critical issue for the stable operation of microfiltration (MF). This study focused on fouling mitigation by sodium percarbonate (SPC) oxidation, activated by ultraviolet (UV) and ferrous ion (Fe(II)). The higher the concentration of oxidizer, the better the anti-fouling performance of MF membrane. Unlike severe MF fouling without oxidation (17.26 L/(m2·h)), UV/SPC and Fe(II)/SPC under optimized dosage improved the final flux to 740 and 1553 L/(m2·h), respectively, and the latter generated Fe(III) which acted as a coagulant. Fe(II)/SPC oxidation enabled a shift in fouling mechanism from complete blocking to cake filtration, while UV/SPC oxidation changed it to standard blockage. UV/SPC oxidation was stronger than Fe(II)/SPC oxidation in removing UV254 and fluorescent organics for higher oxidizing capacity, but the opposite was noted for DOC removal. The deposited foulants on membrane surface after oxidation decreased by at least 88% compared to untreated HFW. Correlation analysis showed that UV254, DOC and organic fraction were key parameters responsible for membrane fouling (correlation coefficient>0.80), oxidizing capacity and turbidity after oxidation were also important parameters. These results provide new insights for fouling control during the HFW treatment.

3.
Environ Sci Technol ; 57(45): 17649-17658, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37910031

RESUMO

Cyanobacteria fouling in ultrafiltration (UF) drinking water treatment poses a significant threat to the stability and sustainability of the process. Both phycocyanin found in cyanobacteria and the polymer membrane exhibit strong fluorescence, which could be readily detected using front-face excitation-emission matrix (FF-EEM) spectroscopy. In this study, FF-EEM was employed for the nondestructive and in situ characterization of algae fouling evolution in UF, while also analyzing fouling mechanisms and reversibility. The results indicated that phycocyanin fluorescence on the membrane surface showed a linear correlation with the specific algal cell count on the membrane surface before reaching saturation. As fouling progressed, membrane fluorescence decreased, which was associated with the extent of the surface coverage on the membrane. The plateau in membrane fluorescence indicated full coverage, coinciding with the cake filtration mechanism, cake compression, and deterioration of fouling reversibility. These findings highlight the promise of FF-EEM as a valuable tool for monitoring and evaluating fouling of cyanobacteria in UF systems.


Assuntos
Cianobactérias , Purificação da Água , Ultrafiltração/métodos , Ficocianina , Membranas Artificiais , Filtração , Purificação da Água/métodos
4.
Environ Sci Technol ; 52(5): 3027-3036, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29389116

RESUMO

Water flux and durability are the two critical parameters that are closely associated with the practical application of membrane distillation (MD). Herein, we report a facile approach to fabricate superhydrophobic polyimide nanofibrous membranes (PI NFMs) with hierarchical structures, interconnected pores, and high porosity, which was derived from the electrospinning, dual-bioinspired design, and fluorination processes. Bioinspired adhesive based on polydopamine /polyethylenimine (PDA/PEI) composite was first linked onto membrane substrates and then assembled lotus leaf hierarchical structure by binding the negatively charged silica nanoparticles (SiO2 NPs) via electrostatic attraction. The resultant superhydrophobic PI NFMs exhibit a water contact angle of 152°, robust hot water resistance of 85 °C, and high water entry pressure of 42 kPa. Moreover, the membrane with omniphobicity presents high water flux over 31 L m-2 h-1 and high salts rejection of ∼100% as well as robust durability for treating high salinity wastewater containing typical low surface tension and dissolved contaminants (Δ T = 40 °C). Significantly, the novel dual-bioinspired method can be used as a universal tool to modify various materials with hierarchical structures, which is expected to provide more effective alternative membranes for MD and even for other selective wetting separation fields.


Assuntos
Destilação , Dióxido de Silício , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Molhabilidade
5.
Environ Sci Technol ; 52(2): 765-774, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29251922

RESUMO

In this study, in situ pretreatments with ozone and Fe(II)/persulfate were employed to suppress membrane fouling during the filtration of algae-laden water and to improve the rejection of metabolites. Both ozonation and Fe(II)/persulfate pretreatments negatively impacted the cell integrity, especially ozonation. Fe(II)/persulfate pretreatment improved the removal of dissolved organic carbon and microcystin-LR, but ozonation resulted in a deterioration in the quality of the filtered water. This suggests that the Fe(II)/persulfate oxidation is selective for organic degradation over cell damage. With ozonation, 2-methylisoborneol and geosmin were detected in the filtered water, and the irreversible fouling increased. The intracellular organic release and generation of small organic compounds with ozonation may be the reason for the increased membrane fouling. Fe(II)/persulfate oxidation substantially mitigated the membrane-fouling resistance at concentrations over 0.2 mM compared to the membrane-fouling resistance without oxidation. The combined effect of oxidation and coagulation is likely the reason for the excellent fouling control with Fe(II)/persulfate pretreatment. Membrane fouling during the filtration of algae-laden water is successively governed by complete-blocking and cake-filtration mechanisms. Ozonation caused a shift in the initial major mechanism to intermediate blocking, and the Fe(II)/persulfate pretreatment (>0.2 mM) converted the dominant mechanism into single-standard blocking.


Assuntos
Ozônio , Purificação da Água , Compostos Ferrosos , Membranas Artificiais , Ultrafiltração
6.
Environ Sci Technol ; 51(1): 253-262, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27958716

RESUMO

The inherent properties of hydrophilicity and mechanical strength of cellulose nanocrystals (CNCs) make them a possible alternative to carbon nanotubes (CNTs) that may present fewer objections to application water-treatment membranes. In this work, the hydrophilicity and mechanical properties of CNCs and CNTs nanocomposite poly(ether sulfone) (PES) membranes were characterized and compared. Membrane pore geometry was analyzed by scanning electron microscopy (SEM). Overall porosity and mean pore radius were calculated based on a wet-dry method. Results showed that PES polymers were loosely packed in the top layer of both the CNC- and CNT-composite membranes (CNC-M and CNT-M). The porosity of the CNC-M was greater than that of the CNT-M. Membrane hydrophilicity, measured by water-contact angle, free energy of cohesion, and water flux, was increased through the addition of either CNCs or functionalized CNTs to an otherwise hydrophobic polymer membrane. The hydrophilicity of the CNC-M was greater than the CNT-M. In addition, the Young's modulus and tensile strength was enhanced for both the CNC-M and CNT-M. While smaller concentrations of CNTs were required to achieve an equal increase in Young's modulus compared with the CNCs, the elasticity of the CNC-composite membranes was greater.


Assuntos
Celulose/química , Nanocompostos/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Nanotubos de Carbono
7.
Biotechnol Bioeng ; 113(12): 2624-2632, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27345371

RESUMO

Bacterial quorum quenching (QQ) has been shown to be effective in controlling biofouling in membrane bioreactors (MBRs) for wastewater treatment. However, the encapsulation of a sufficient level of QQ bacteria is complicated and difficult. In plant research, gamma-caprolactone (GCL), which is structurally similar to the quorum signal, N-acyl homoserine lactone (AHL), was successfully used to specifically stimulate AHL-degrading bacteria (biostimulation) in hydroponic systems to control blackleg and soft rot diseases in potato. In this study, the feasibility of enriching QQ bacteria from activated sludge by GCL was examined, and the effect of biostimulation on biofouling control in MBR treating domestic wastewater was investigated. The results showed that after enrichment with GCL, activated sludge could effectively degrade AHLs, and a QQ gene (qsdA) was augmented. The proposed biostimulation QQ strategy, by introducing and continuously dosing GCL, could significantly increase QQ activity, decrease AHL, control the secretion of extracellular polymeric substances (EPS), and thus, effectively control biofouling in an MBR. This biostimulation QQ strategy provides a more convenient option for biofouling control in MBR applications. Biotechnol. Bioeng. 2016;113: 2624-2632. © 2016 Wiley Periodicals, Inc.


Assuntos
4-Butirolactona/farmacologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Reatores Biológicos/microbiologia , Percepção de Quorum/fisiologia , Águas Residuárias/microbiologia , Biodegradação Ambiental , Desenho de Equipamento , Análise de Falha de Equipamento , Membranas Artificiais , Esgotos/microbiologia , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Purificação da Água/instrumentação
8.
Appl Microbiol Biotechnol ; 100(18): 7887-97, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27087526

RESUMO

Solid retention time (SRT) is one of the most important operational parameters in membrane bioreactor (MBR), which significantly influences membrane fouling. It is widely recognized that SRT mainly changes biomass characteristics, and then, influences membrane fouling. Effect of SRT on quorum sensing (QS) in MBR, which could also influence fouling by coordinating biofilm formation, has not been reported. In this study, fouling, QS, soluble microbial products (SMP), and extracellular polymer substances (EPS) in MBRs operated under SRTs of 4, 10, and 40 days were investigated. The results showed that as SRT increased, the abundance of quorum quenching (QQ) bacteria increased, the quorum signal degradation activity of activated sludge increased, the concentrations of signal molecules in MBR decreased, the excretion of SMP and EPS decreased, and thus membrane biofouling was alleviated. Therefore, besides altering the biomass physiochemical properties, SRT also changed the balance between QS and QQ in MBR, and in this way, influenced membrane biofouling.


Assuntos
Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Reatores Biológicos/microbiologia , Membranas/microbiologia , Percepção de Quorum , Fatores de Tempo , Purificação da Água
9.
J Environ Sci (China) ; 43: 177-186, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27155423

RESUMO

As a routine measurement to alleviate membrane fouling, hydraulic cleaning is of great significance for the steady operation of ultrafiltration (UF) systems in water treatment processes. In this work, a comparative study was performed to investigate the effects of the composition of backwash water on the hydraulic cleaning performance of UF membranes fouled by humic acid (HA). Various types of backwash water, including UF permeate, Milli-Q water, NaCl solution, CaCl2 solution and HA solution, were compared in terms of hydraulically irreversible fouling index, total surface tension and residual HA. The results indicated that Milli-Q water backwash was superior to UF permeate backwash in cleaning HA-fouled membranes, and the backwash water containing Na(+) or HA outperformed Milli-Q water in alleviating HA fouling. On the contrary, the presence of Ca(2+) in backwash water significantly decreased the backwash efficiency. Moreover, Ca(2+) played an important role in foulant removal, and the residual HA content closely related to the residual Ca(2+) content. Mechanism analysis suggested that the backwash process may involve fouling layer swelling, ion exchange, electric double layer release and competitive complexation. Ion exchange and competitive complexation played significant roles in the efficient hydraulic cleaning associated with Na(+) and HA, respectively.


Assuntos
Membranas Artificiais , Ultrafiltração/métodos , Substâncias Húmicas , Purificação da Água/métodos
10.
Water Sci Technol ; 72(5): 689-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26287826

RESUMO

The effects of poly aluminum chloride (PACl) dosing positions on the performance of a pilot scale anoxic/oxic membrane bioreactor were investigated. PACl dosage was optimized at 19.5 mg Al2O3/L by jar test. Nutrients removal efficiencies and sludge properties were systematically investigated during periods with no PACl dosing (phase I), with PACl dosing in oxic tank (phase II) and then in anoxic tank (phase III). The results showed that total phosphorus removal efficiency increased from 18 to 88% in phase II and 85% in phase III with less than 0.5 mg P/L in effluent. Ammonia nitrogen removal efficiencies reached 99% in all phases and chemical oxygen demand removal efficiencies reached 92%, 91% and 90% in the three phases, respectively. Total nitrogen removal efficiency decreased from 59% in phase I to 49% in phases II and III. Dosing PACl in the oxic tank resulted in smaller sludge particle size, higher zeta potential, better sludge settleability and lower membrane fouling rate in comparison with dosing PACl in the anoxic tank.


Assuntos
Compostos de Alumínio , Reatores Biológicos , Cloretos , Purificação da Água , Cloreto de Alumínio , Incrustação Biológica , Análise da Demanda Biológica de Oxigênio , Membranas Artificiais , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Projetos Piloto , Esgotos
11.
Bioresour Technol ; 406: 131051, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944315

RESUMO

Strengthening the direct interspecies electron transfer (DIET) is an effective strategy to improve the performance of anaerobic digestion (AD) process. In this study, the polyaniline functionated activated carbon (AC-PANi) was prepared by chemical oxidative polymerization. This material possessed pseudo-capacitance properties as well as excellent charge transfer capability. The experimental results demonstrated that the incorporation of AC-PANi in AD process could efficiently increase the chemical oxygen demand (COD) removal (18.6 %) and daily methane production rate (35.3 %). The AC-PANi can also act as an extracellular acceptor to promote the synthesis of adenosine triphosphate (ATP) and secretion of extracellular enzymes as well as cytochrome C (Cyt-C). The content of coenzyme F420 on methanogens was also shown to be increased by 60.9 % with the addition of AC-PANi in AD reactor. Overall, this work provides an easy but feasible way to enhance AD performance by promoting DIET between acetate-producing bacteria and methanogens.


Assuntos
Compostos de Anilina , Carvão Vegetal , Metano , Anaerobiose , Transporte de Elétrons , Metano/metabolismo , Carvão Vegetal/química , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Trifosfato de Adenosina/metabolismo
12.
Water Res ; 262: 122139, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068730

RESUMO

Membrane distillation (MD) offers promise for recycling shale gas produced water (SGPW), while membrane fouling is still a major obstacle in standalone MD. Herein, sodium percarbonate (SPC) oxidation was proposed as MD pretreatment, and the performance of the single MD, SPC-MD hybrid process and Fe(II)/SPC-MD hybrid process for SGPW treatment were systematically evaluated. Results showed that compared to raw SGPW, the application of SPC and Fe(II)/SPC led to the decrease of the fluorescent organics by 28.54 % and 54.52 %, respectively. The hydrophobic fraction decreased from 52.75 % in raw SGPW to 37.70 % and 27.20 % for SPC and Fe(II)/SPC, respectively, and the MD normalized flux increased from 0.19 in treating raw SGPW to 0.65 and 0.81, respectively. The superiority of SPC oxidation in reducing the deposited membrane foulants and restoring membrane properties was further confirmed through scanning electron microscopy observation, attenuated total reflection fourier transform infrared, water contact angle and surface tension analyses of fouled membranes. Correlation analysis revealed that hydrophobic/hydrophilic matters and fluorescent organics in SGPW took a crucial role in MD fouling. The mechanism of MD fouling mitigation by Fe(II)/SPC oxidation was attributed to the decrease in concentrations and hydrophobicity of organic by synergistic oxidation, coagulation and adsorption.


Assuntos
Carbonatos , Destilação , Membranas Artificiais , Oxirredução , Destilação/métodos , Carbonatos/química , Purificação da Água/métodos , Ferro/química , Interações Hidrofóbicas e Hidrofílicas
13.
Water Res ; 254: 121340, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428235

RESUMO

Membrane electrochemical reactor (MER) shows superiority to electrochemical oxidation (EO) in high salinity organic wastewater (HSOW) treatment, but requirement of proton exchange membranes (PEM) increases investment and maintenance cost. In this work, the feasibility of using low-cost pressure-driven membranes as the separation membrane in MER system was systematically investigated. Commonly used pressure-driven membranes, including loose membranes such as microfiltration (MF) and ultrafiltration (UF), as well as dense membranes like nanofiltration (NF) and reverse osmosis (RO), were employed in the study. When tested in a contamination-free solution, MF and UF exhibited superior electrochemical performance compared to PEM, with comparable pH regulation capabilities in the short term. When foulant (humic acid, Ca2+ and Mg2+) presented in the feed, UF saved the most energy (43 %) compared to PEM with similar removal rate of UV254 (∼85 %). In practical applications of MER for treating nanofiltration concentrate (NC) of landfill leachate, UF saved 27 % energy compared to PEM per cycle with the least Ca2+ and Mg2+ retention in membrane and none obvious organics permeation. For fouled RO and PEM with ion transport impediment, water splitting was exacerbated, which decreased the percentage of oxidation for organics. Overall, replacing of PEM with UF significantly reduce the costs associated with both the investment and operation of MER, which is expected to broaden the practical application for treating HSOW.


Assuntos
Prótons , Purificação da Água , Salinidade , Estudos de Viabilidade , Osmose
14.
Water Res ; 266: 122332, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39216126

RESUMO

Substantial volumes of hazardous shale gas produced water (SGPW) generated in unconventional natural gas exploration. Membrane distillation (MD) is a promising approach for SGPW desalination, while membrane fouling, wetting, and permeate deterioration restrict MD application. The integration of gravity-driven membrane (GDM) with MD process was proposed to improve MD performance, and different pretreatment methods (i.e., oxidation, coagulation, and granular filtration) were systematically investigated. Results showed that pretreatment released GDM fouling and improved permeate quality by enrich certain microbes' community (e.g., Proteobacteria and Nitrosomonadaceae), greatly ensured the efficient desalination of MD. Pretreatment greatly influences GDM fouling layer morphology, leading to different flux performance. Thick/rough/hydrophilic fouling layer formed after coagulation, and thin/loose fouling layer formed after silica sand filtration improved GDM flux by 2.92 and 1.9 times, respectively. Moreover, the beneficial utilization of adsorption-biodegradation effects significantly enhanced GDM permeate quality. 100 % of ammonia and 53.99 % of UV254 were efficiently removed after zeolite filtration-GDM and granular activated carbon filtration-GDM, respectively. Compared to the surged conductivity (41.29 µS/cm) and severe flux decline (>82 %) under water recovery rate of 75 % observed in single MD for SGPW treatment, GDM economically controlled permeate conductivity (1.39-19.9 µS/cm) and MD fouling (flux decline=8.3 %-27.5 %). Exploring the mechanisms, the GDM-MD process has similarity with Janus MD membrane in SGPW treatment, significantly reduced MD fouling and wetting.

15.
Water Res ; 266: 122398, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244865

RESUMO

Chemical moderate preoxidation for algae-laden water is an economical and prospective strategy for controlling algae and exogenous pollutants, whereas it is constrained by a lack of effective on-line evaluation and quick-response feedback method. Herein, excitation-emission matrix parallel factor analysis (EEM-PARAFAC) was used to identify cyanobacteria fluorophores after preoxidation of sodium hypochlorite (NaClO) at Excitation/Emission wavelength of 260(360)/450 nm, based on which the algal cell integrity and intracellular organic matter (IOM) release were quantitatively assessed. Machine learning modeling of fluorescence spectral data for prediction of moderate preoxidation using NaClO was established. The optimal NaClO dosage for moderate preoxidation depended on algal density, growth phases, and organic matter concentrations in source water matrices. Low doses of NaClO (<0.5 mg/L) led to short-term desorption of surface-adsorbed organic matter (S-AOM) without compromising algal cell integrity, whereas high doses of NaClO (≥0.5 mg/L) quickly caused cell damage. The optimal NaClO dosage increased from 0.2-0.3 mg/L to 0.9-1.2 mg/L, corresponding to the source water with algal densities from 0.1 × 106 to 2.0 × 106 cells/mL. Different growth stages required varying NaClO doses: stationary phase cells needed 0.3-0.5 mg/L, log phase cells 0.6-0.8 mg/L, and decaying cells 2.0-2.5 mg/L. The presence of natural organic matter and S-AOM increased the NaClO dosage limit with higher dissolved organic carbon (DOC) concentrations (1.00 mg/L DOC required 0.8-1.0 mg/L NaClO, while 2.20 mg/L DOC required 1.5-2.0 mg/L). Compared to other predictive models, the machine learning model (Gaussian process regression-Matern (0.5)) performed best, achieving R2 values of 1.000 and 0.976 in training and testing sets. Optimal preoxidation followed by coagulation effectively removed algal contaminants, achieving 91%, 92%, and 92% removal for algal cells, turbidity, and chlorophyll-a, respectively, thereby demonstrating the effectiveness of moderate preoxidation. This study introduces a novel approach to dynamically adjust NaClO dosage by monitoring source water qualities and tracking post-preoxidation fluorophores, enhancing moderate preoxidation technology application in algae-laden water treatment.

16.
Water Res ; 266: 122434, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276476

RESUMO

It is a great challenge for effective treatment of shale gas produced water (SGPW), a typical industrial wastewater with complex composition. Single forward osmosis (FO) or membrane distillation (MD) process has been widely used for desalination of SGPW, with membrane fouling not well addressed. Fertilizer draw solution (DS) with high osmotic pressure is less likely to cause FO fouling and can be used for irrigation. An integrated process using fertilizer-driven FO (FDFO) and MD process was proposed for the first time for SGPW treatment, and characteristics of fertilizer DS and powdered activated carbon (PAC) enhancement were assessed. The DS using KCl and (NH4)2SO4 had high MD fluxes (36.8-38.8 L/(m2·h)) and low permeate conductivity (below 50 µS/cm), increasing the contact angle of the MD membrane by 113 % than that without FO, while the DS using MgCl2 and NH4H2PO4 produced a lower reverse salt flux (0.9-3.2 g/(m2·h)). When diluted DS was treated using PAC, the MD permeate conductivity was further reduced to 35 µS/cm without ammonia, and the membrane hydrophobicity was maintained to 71-83 % of the original. The mechanism of the FDFO-MD integrated process for mitigating MD fouling and improving permeate quality was analyzed, providing guidance for efficient SGPW treatment.

17.
Water Res ; 257: 121674, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678835

RESUMO

The occurrence of seasonal algae blooms represents a huge dilemma for water resource management and has garnered widespread attention. Therefore, finding methods to control algae pollution and improve water quality is urgently needed. Moderate oxidation has emerged as a feasible way of algae-laden water treatment and is an economical and prospective strategy for controlling algae and endogenous and exogenous pollutants. Despite this, a comprehensive understanding of algae-laden water treatment by moderate oxidation, particularly principles and summary of advanced strategies, as well as challenges in moderate oxidation application, is still lacking. This review outlines the properties and characterization of algae-laden water, which serve as a prerequisite for assessing the treatment efficiency of moderate oxidation. Biomass, cell viability, and organic matter are key components to assessing moderate oxidation performance. More importantly, the recent advancements in employing moderate oxidation as a treatment or pretreatment procedure were examined, and the suitability of different techniques was evaluated. Generally, moderate oxidation is more promising for improving the solid-liquid separation process by the reduction of cell surface charge (stability) and removal/degradation of the soluble algae secretions. Furthermore, this review presents an outlook on future research directions aimed at overcoming the challenges encountered by existing moderate oxidation technologies. This comprehensive examination aims to provide new and valuable insights into the moderate oxidation process.


Assuntos
Oxirredução , Purificação da Água , Purificação da Água/métodos , Biomassa , Eutrofização , Água/química
18.
Bioresour Technol ; 402: 130787, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703955

RESUMO

Slow dissolution/hydrolysis of insoluble/macromolecular organics and poor sludge filterability restrict the application potential of anaerobic membrane bioreactor (AnMBR). Bubble-free membrane microaeration was firstly proposed to overcome these obstacles in this study. The batch anaerobic digestion tests feeding insoluble starch and soluble peptone with and without microaeration showed that microaeration led to a 65.7-144.8% increase in methane production and increased critical flux of microfiltration membrane via driving the formation of large sludge flocs and the resultant improvement of sludge settleability. The metagenomic and bioinformatic analyses showed that microaeration significantly enriched the functional genes and bacteria for polysaccharide and protein hydrolysis, microaeration showed little negative effects on the functional genes involved in anaerobic metabolisms, and substrate transfer from starch to peptone significantly affected the functional genes and microbial community. This study demonstrates the dual synergism of microaeration to enhance the dissolution/hydrolysis/acidification of insoluble/macromolecular organics and sludge filterability for AnMBR application.


Assuntos
Reatores Biológicos , Filtração , Membranas Artificiais , Esgotos , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Anaerobiose , Filtração/métodos , Metano/metabolismo , Hidrólise , Amido/metabolismo
19.
Water Res ; 247: 120807, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924685

RESUMO

The scaling-induced wetting phenomenon seriously affects the application of membrane distillation (MD) technology in hypersaline wastewater treatment. Unlike the large amount of researches on membrane scaling and membrane wetting, scaling-induced wetting is not sufficiently studied. In this work, the current research evolvement of scaling-induced wetting in MD was systematically summarized. Firstly, the theories involving scaling-induced wetting were discussed, including evaluation of scaling potential of specific solutions, classical and non-classical crystal nucleation and growth theories, observation and evolution of scaling-induced processes. Secondly, the primary pretreatment methods for alleviating scaling-induced wetting were discussed in detail, focusing on adding agents composed of coagulation, precipitation, oxidation, adsorption and scale inhibitors, filtration including granular filtration, membrane filtration and mesh filtration and application of external fields including sound, light, heat, electromagnetism, magnetism and aeration. Then, the roles of operation conditions and cleaning conditions in alleviating scaling-induced wetting were evaluated. The main operation parameters included temperature, flow rate, pressure, ultrasound, vibration and aeration, while different types of cleaning reagents, cleaning frequency and a series of assisted cleaning measures were summarized. Finally, the challenges and future needs in the application of nucleation theory to scaling-induced wetting, the speculation, monitoring and mitigation of scaling-induced wetting were proposed.


Assuntos
Minerais , Purificação da Água , Destilação/métodos , Membranas Artificiais , Purificação da Água/métodos , Molhabilidade
20.
Membranes (Basel) ; 13(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37233524

RESUMO

Ultrafiltration (UF) has been proven effective in removing algae during seasonal algal blooms, but the algal cells and the metabolites can induce severe membrane fouling, which undermines the performance and stability of the UF. Ultraviolet-activated sulfite with iron (UV/Fe(II)/S(IV)) could enable an oxidation-reduction coupling circulation and exert synergistic effects of moderate oxidation and coagulation, which would be highly preferred in fouling control. For the first time, the UV/Fe(II)/S(IV) was systematically investigated as a pretreatment of UF for treating Microcystis aeruginosa-laden water. The results showed that the UV/Fe(II)/S(IV) pretreatment significantly improved the removal of organic matter and alleviated membrane fouling. Specifically, the organic matter removal increased by 32.1% and 66.6% with UV/Fe(II)/S(IV) pretreatment for UF of extracellular organic matter (EOM) solution and algae-laden water, respectively, while the final normalized flux increased by 12.0-29.0%, and reversible fouling was mitigated by 35.3-72.5%. The oxysulfur radicals generated in the UV/S(IV) degraded the organic matter and ruptured the algal cells, and the low-molecular-weight organic matter generated in the oxidation penetrated the UF and deteriorated the effluent. The over-oxidation did not happen in the UV/Fe(II)/S(IV) pretreatment, which may be attributed to the cyclic redox Fe(II)/Fe(III) coagulation triggered by the Fe(II). The UV-activated sulfate radicals in the UV/Fe(II)/S(IV) enabled satisfactory organic removal and fouling control without over-oxidation and effluent deterioration. The UV/Fe(II)/S(IV) promoted the aggregation of algal foulants and postponed the shift of the fouling mechanisms from standard pore blocking to cake filtration. The UV/Fe(II)/S(IV) pretreatment proved effective in enhancing the UF for algae-laden water treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA