Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Sci ; 13(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37891826

RESUMO

Recent studies have discovered that functional connections are impaired in patients with Parkinson's disease (PD) accompanied by hallucinations (PD-H), even at the preclinical stage. The cerebellum has been implicated in playing a role in cognitive processes. However, the functional connectivity (FC) between the cognitive sub-regions of the cerebellum in PD patients with hallucinations needs further clarification. Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from three groups (17 PD-H patients, 13 patients with Parkinson's disease not accompanied by hallucinations (PD-NH), and 26 healthy controls (HC)). The data were collected in this study to investigate the impact of cerebellar FC changes on cognitive performance. Additionally, we define cerebellar FC as a training feature for classifying all subjects using Support Vector Machines (SVMs). We found that in the PD-H patients, there was an increase in FC within the left side of the precuneus (PCUN) compared to the HC. Additionally, there was an increase in FC within the bilateral opercular part of the inferior frontal gyrus (IFGoprec) and triangular part of the inferior frontal gyrus (IFCtriang), as well as the left side of the postcentral gyrus (PoCG), inferior parietal lobe (IPL), and PCUN compared to the PD-NH patients. In the machine learning training results, cerebellar FC has also been proven to be an effective biomarker feature, achieving a recognition rate of over 90% for PD-H. These findings indicate that the cortico-cerebellar FC in PD-H and PD-NH patients was significantly disrupted, with different patterns of distribution. The proposed pipeline offers a promising, low-cost alternative for diagnosing preclinical PD-H and may also be beneficial for other degenerative brain disorders.

2.
Front Aging Neurosci ; 15: 1189621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298924

RESUMO

Introduction: Visual hallucination is a prevalent psychiatric disorder characterized by the occurrence of false visual perceptions due to misinterpretation in the brain. Individuals with Parkinson's disease often experience both minor and complex visual hallucinations. The underlying mechanism of complex visual hallucinations in Parkinson's patients is commonly attributed to dysfunction in the visual pathway and attention network. However, there is limited research on the mechanism of minor hallucinations. Methods: To address this gap, we conducted an experiment involving 13 Parkinson's patients with minor hallucinations, 13 Parkinson's patients without hallucinations, and 13 healthy elderly individuals. We collected and analyzed EEG and MRI data. Furthermore, we utilized EEG data from abnormal brain regions to train a machine learning model to determine whether the abnormal EEG data were associated with minor hallucinations. Results: Our findings revealed that Parkinson's patients with minor hallucinations exhibited excessive activation of cortical excitability, an imbalanced interaction between the attention network and the default network, and disruption in the connection between these networks. These findings is similar to the mechanism observed in complex visual hallucinations. The visual reconstruction of one patient experiencing hallucinations yields results that differ from those observed in subjects without such symptoms. Discussion: The visual reconstruction results demonstrated significant differences between Parkinson's patients with hallucinations and healthy subjects. This suggests that visual reconstruction techniques may offer a means of evaluating hallucinations.

3.
Materials (Basel) ; 15(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36013614

RESUMO

In this study, a laser scanning machining system supporting on-the-fly machining and laser power follow-up adjustment was developed to address the increasing demands for high-speed, wide-area, and high-quality laser scanning machining. The developed laser scanning machining system is based on the two-master and multi-slave architecture with synchronization mechanism, and realizes the integrated and synchronous collaborative control of the motion stage or robot, the galvanometer scanner, and the laser over standard industrial ethernet networks. The galvanometer scanner can be connected to the industrial ethernet topology as a node, via the self-developed galvanometer scanner control gateway module, and a "one-transmission and multiple-conversion" approach is proposed to ensure real-time ability and synchronization. The proposal of a laser power follow-up adjustment approach could realize real-time synchronous modulation of the laser power, along with the motion of the galvanometer scanner, which is conducive to ensuring the machining quality. In addition, machining software was developed to realize timesaving and high-quality laser scanning machining. The feasibility and practicability of this laser scanning machining system were verified using specific cases. Results showed that the proposed system overcame the limitation of working field size and isolation between the galvanometer scanner controller with the stage motion controller, and achieved high-speed and efficient laser scanning machining for both large-area consecutively and discontinuously arrayed patterns. Moreover, the integration of laser power follow-up adjustment into the system was conducive to ensuring welding quality and inhibiting welding defects. The proposed system paves the way for high-speed, wide-area, and high-quality laser scanning machining and provides technical convenience and cost advantages for customized laser-processing applications, exhibiting great research value and application potential in the field of material processing engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA