Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 27(2): 466-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26203118

RESUMO

The NADPH oxidase (NOX) isoform NOX4 has been linked with diabetic kidney disease (DKD). However, a mechanistic understanding of the downstream effects of NOX4 remains to be established. We report that podocyte-specific induction of NOX4 in vivo was sufficient to recapitulate the characteristic glomerular changes noted with DKD, including glomerular hypertrophy, mesangial matrix accumulation, glomerular basement membrane thickening, albuminuria, and podocyte dropout. Intervention with a NOX1/NOX4 inhibitor reduced albuminuria, glomerular hypertrophy, and mesangial matrix accumulation in the F1 Akita model of DKD. Metabolomic analyses from these mouse studies revealed that tricarboxylic acid (TCA) cycle-related urinary metabolites were increased in DKD, but fumarate levels were uniquely reduced by the NOX1/NOX4 inhibitor. Expression of fumarate hydratase (FH), which regulates urine fumarate accumulation, was reduced in the diabetic kidney (in mouse and human tissue), and administration of the NOX1/NOX4 inhibitor increased glomerular FH levels in diabetic mice. Induction of Nox4 in vitro and in the podocyte-specific NOX4 transgenic mouse led to reduced FH levels. In vitro, fumarate stimulated endoplasmic reticulum stress, matrix gene expression, and expression of hypoxia-inducible factor-1α (HIF-1α) and TGF-ß. Similar upregulation of renal HIF-1α and TGF-ß expression was observed in NOX4 transgenic mice and diabetic mice and was attenuated by NOX1/NOX4 inhibition in diabetic mice. In conclusion, NOX4 is a major mediator of diabetes-associated glomerular dysfunction through targeting of renal FH, which increases fumarate levels. Fumarate is therefore a key link connecting metabolic pathways to DKD pathogenesis, and measuring urinary fumarate levels may have application for monitoring renal NOX4 activity.


Assuntos
Nefropatias Diabéticas/metabolismo , Fumarato Hidratase/fisiologia , Metabolômica , NADPH Oxidases/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 4
2.
PLoS One ; 9(10): e109948, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25333392

RESUMO

Impaired cognitive processing is a hallmark of addiction. In particular, deficits in inhibitory control can propel continued drug use despite adverse consequences. Clinical evidence shows that detoxified alcoholics exhibit poor inhibitory control in the Continuous Performance Task (CPT) and related tests of motor impulsivity. Animal models may provide important insight into the neural mechanisms underlying this consequence of chronic alcohol exposure though pre-clinical investigations of behavioral inhibition during alcohol abstinence are sparse. The present study employed the rat 5 Choice-Continuous Performance Task (5C-CPT), a novel pre-clinical variant of the CPT, to evaluate attentional capacity and impulse control over the course of protracted abstinence from chronic intermittent alcohol consumption. In tests conducted with familiar 5C-CPT conditions EtOH-exposed rats exhibited impaired attentional capacity during the first hours of abstinence and impaired behavioral restraint (increased false alarms) during the first 5d of abstinence that dissipated thereafter. Subsequent tests employing visual distractors that increase the cognitive load of the task revealed significant increases in impulsive action (premature responses) at 3 and 5 weeks of abstinence, and the emergence of impaired behavioral restraint (increased false alarms) at 7 weeks of abstinence. Collectively, these findings demonstrate the emergence of increased impulsive action in alcohol-dependent rats during protracted alcohol abstinence and suggest the 5C-CPT with visual distractors may provide a viable behavioral platform for characterizing the neurobiological substrates underlying impaired behavioral inhibition resulting from chronic intermittent alcohol exposure.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Comportamento de Escolha/fisiologia , Etanol , Inibição Psicológica , Síndrome de Abstinência a Substâncias/psicologia , Animais , Atenção/fisiologia , Comportamento Animal/fisiologia , Masculino , Desempenho Psicomotor/fisiologia , Ratos , Ratos Wistar , Tempo de Reação/fisiologia
3.
J Clin Invest ; 123(11): 4888-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24135141

RESUMO

Diabetic microvascular complications have been considered to be mediated by a glucose-driven increase in mitochondrial superoxide anion production. Here, we report that superoxide production was reduced in the kidneys of a steptozotocin-induced mouse model of type 1 diabetes, as assessed by in vivo real-time transcutaneous fluorescence, confocal microscopy, and electron paramagnetic resonance analysis. Reduction of mitochondrial biogenesis and phosphorylation of pyruvate dehydrogenase (PDH) were observed in kidneys from diabetic mice. These observations were consistent with an overall reduction of mitochondrial glucose oxidation. Activity of AMPK, the major energy-sensing enzyme, was reduced in kidneys from both diabetic mice and humans. Mitochondrial biogenesis, PDH activity, and mitochondrial complex activity were rescued by treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR). AICAR treatment induced superoxide production and was linked with glomerular matrix and albuminuria reduction in the diabetic kidney. Furthermore, diabetic heterozygous superoxide dismutase 2 (Sod2(+/-)) mice had no evidence of increased renal disease, and Ampka2(-/-) mice had increased albuminuria that was not reduced with AICAR treatment. Reduction of mitochondrial superoxide production with rotenone was sufficient to reduce AMPK phosphorylation in mouse kidneys. Taken together, these results demonstrate that diabetic kidneys have reduced superoxide and mitochondrial biogenesis and activation of AMPK enhances superoxide production and mitochondrial function while reducing disease activity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Ribonucleotídeos/farmacologia , Rotenona/farmacologia , Superóxido Dismutase/deficiência , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA