Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 77(5): 903-918, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31312877

RESUMO

MicroRNAs (miRs) contribute to different aspects of cardiovascular pathology, among others cardiac hypertrophy and atrial fibrillation. The aim of our study was to evaluate the impact of miR-221/222 on cardiac electrical remodeling. Cardiac miR expression was analyzed in a mouse model with altered electrocardiography parameters and severe heart hypertrophy. Next generation sequencing revealed 14 differentially expressed miRs in hypertrophic hearts, with miR-221 and -222 being the strongest regulated miR-cluster. This increase was restricted to cardiomyocytes and not observed in cardiac fibroblasts. Additionally, we evaluated the change of miR-221/222 in vivo in two models of pharmacologically induced heart hypertrophy (angiotensin II, isoprenaline), thereby demonstrating a stimulus-induced increase in miR-221/222 in vivo by angiotensin II but not by isoprenaline. Whole transcriptome analysis by RNA-seq and qRT-PCR validation revealed an enriched number of downregulated mRNAs coding for proteins located in the T-tubule, which are also predicted targets for miR-221/222. Among those, mRNAs were the L-type Ca2+ channel subunits as well as potassium channel subunits. We confirmed that both miRs target the 3'-untranslated regions of Cacna1c and Kcnj5. Furthermore, enhanced expression of these miRs reduced L-type Ca2+ channel and Kcnj5 channel abundance and function, which was analyzed by whole-cell patch clamp recordings or Western blot and flux measurements, respectively. miR-221 and -222 contribute to the regulation of L-type Ca2+ channels as well as Kcnj5 channels and, therefore, potentially contribute to disturbed cardiac excitation generation and propagation. Future studies will have to evaluate the pathophysiological and clinical relevance of aberrant miR-221/222 expression for electrical remodeling.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , MicroRNAs/genética , Canais de Potássio/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Linhagem Celular , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Canais de Potássio/genética
2.
Acta Physiol (Oxf) ; 233(3): e13715, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34228904

RESUMO

AIM: This study investigates the role of calcineurin for angiotensin II (AngII)-induced vascular remodelling with the help of a mouse model lacking the catalytic beta subunit of calcineurin (PPP3CB KO). METHODS: Wildtype (WT) and PPP3CB KO mice were treated for 4 weeks with AngII followed by assessment of blood pressure, histological evaluation of aortas and mRNA analysis of aortic genes PPP3CB-dependently regulated by AngII. Primary murine vascular smooth muscle cells (VSMCs) were used for qPCR, ELISA and Western Blot experiments as well as wound healing and cell proliferation assays. RESULTS: Upon AngII treatment, PPP3CB KO mice showed less aortic media thickening, lumen dilation and systolic blood pressure compared to WT mice. Next-generation sequencing data of aortic tissue indicated an increase in extracellular matrix components (EMCs), cell migration and cell proliferation. A PPP3CB-dependent increase in EMC was confirmed by qPCR in aorta and VSMCs. PPP3CB-dependent stimulation of VSMC migration could be verified by wound healing assays but markers of enhanced cell proliferation were only detectable in aortic tissue of WT mice but not in isolated WT or KO VSMCs. We could demonstrate in VSMCs with pharmacological inhibitors that PPP3CB leads to enhanced heparin-binding EGF-like growth factor (HB-EGF) secretion, epidermal growth factor receptor (EGFR) activation and consecutive stimulation of transforming growth factor ß(TGFß) and connective tissue growth factor (CTGF) signalling that enhances collagen expression. CONCLUSION: AngII-induced vascular remodelling involves PPP3CB, which leads to enhanced EMC production, VSMC migration and sustained increase in systolic blood pressure via HBEGF/EGFR-TGFß-CTGF signalling.


Assuntos
Angiotensina II , Remodelação Vascular , Animais , Calcineurina , Receptores ErbB , Camundongos , Miócitos de Músculo Liso
3.
Sci Rep ; 11(1): 13229, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168192

RESUMO

The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important effector of the renin-angiotensin-aldosterone-system and elicits pathophysiological effects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR-mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identified a SNP within the EGFR promoter that modulates MR-induced EGFR expression. In RNA-sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to differential expression of cardiac ion channels, especially of the T-type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone- and EGF-responsiveness of CACNA1H expression was confirmed in HL-1 cells by Western blot and by measuring peak current density of T-type calcium channels. Aldosterone-induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T-type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL-1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an effect on HL-1 cell diameter, and the extent of this regulation seems to depend on the SNP-216 (G/T) genotype. This suggests that the EGFR may be an intermediate for MR-mediated cardiovascular changes and that SNP analysis can help identify subgroups of patients that will benefit most from MR antagonists.


Assuntos
Canais de Cálcio Tipo T/genética , Receptores ErbB/genética , Hipertrofia/genética , Receptores de Mineralocorticoides/genética , Aldosterona/genética , Animais , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/patologia , Linhagem Celular , Feminino , Genótipo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Ratos
4.
Biomedicines ; 9(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201741

RESUMO

MicroRNAs (miRs) contribute to different aspects of cardiovascular pathology, among them cardiac hypertrophy and atrial fibrillation. Cardiac miR expression was analyzed in a mouse model with structural and electrical remodeling. Next-generation sequencing revealed that miR-208b-3p was ~25-fold upregulated. Therefore, the aim of our study was to evaluate the impact of miR-208b on cardiac protein expression. First, an undirected approach comparing whole RNA sequencing data to miR-walk 2.0 miR-208b 3'-UTR targets revealed 58 potential targets of miR-208b being regulated. We were able to show that miR-208b mimics bind to the 3' untranslated region (UTR) of voltage-gated calcium channel subunit alpha1 C and Kcnj5, two predicted targets of miR-208b. Additionally, we demonstrated that miR-208b mimics reduce GIRK1/4 channel-dependent thallium ion flux in HL-1 cells. In a second undirected approach we performed mass spectrometry to identify the potential targets of miR-208b. We identified 40 potential targets by comparison to miR-walk 2.0 3'-UTR, 5'-UTR and CDS targets. Among those targets, Rock2 and Ran were upregulated in Western blots of HL-1 cells by miR-208b mimics. In summary, miR-208b targets the mRNAs of proteins involved in the generation of cardiac excitation and propagation, as well as of proteins involved in RNA translocation (Ran) and cardiac hypertrophic response (Rock2).

5.
Sci Rep ; 7(1): 15340, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127314

RESUMO

The pathogenesis of cardiovascular diseases is a multifunctional process in which the mineralocorticoid receptor (MR), a ligand-dependent transcription factor, is involved as proven by numerous clinical studies. The development of pathophysiological MR actions depends on the existence of additional factors e.g. inflammatory cytokines and seems to involve posttranslational MR modifications e.g. phosphorylation. Casein kinase 2 (CK2) is a ubiquitously expressed multifunctional serine/threonine kinase that can be activated under inflammatory conditions as the MR. Sequence analysis and inhibitor experiments revealed that CK2 acts as a positive modulator of MR activity by facilitating MR-DNA interaction with subsequent rapid MR degradation. Peptide microarrays and site-directed mutagenesis experiments identified the highly conserved S459 as a functionally relevant CK2 phosphorylation site of the MR. Moreover, MR-CK2 protein-protein interaction mediated by HSP90 was shown by co-immunoprecipitation. During inflammation, cytokine stimulation led to a CK2-dependent increased expression of proinflammatory genes. The additional MR activation by aldosterone during cytokine stimulation augmented CK2-dependent NFκB signaling which enhanced the expression of proinflammatory genes further. Overall, in an inflammatory environment the bidirectional CK2-MR interaction aggravate the existing pathophysiological cellular situation.


Assuntos
Aldosterona/farmacologia , Caseína Quinase II/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Caseína Quinase II/genética , Células HEK293 , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores de Mineralocorticoides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA