Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 25(1): 37-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322149

RESUMO

PURPOSE: Biallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported. METHODS: Genotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp). RESULTS: Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon. For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period. CONCLUSION: We have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered.


Assuntos
Anormalidades Múltiplas , Defeitos Congênitos da Glicosilação , Epilepsia , Hérnia Diafragmática , Gravidez , Feminino , Humanos , Hipotonia Muscular/genética , Epilepsia/genética , Anormalidades Múltiplas/genética , Hérnia Diafragmática/genética , Convulsões/genética , Fenótipo , Estudos de Associação Genética , Síndrome
2.
Hum Mol Genet ; 28(21): 3543-3551, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31423530

RESUMO

We report the case of a consanguineous couple who lost four pregnancies associated with skeletal dysplasia. Radiological examination of one fetus was inconclusive. Parental exome sequencing showed that both parents were heterozygous for a novel missense variant, p.(Pro133Leu), in the SLC35D1 gene encoding a nucleotide sugar transporter. The affected fetus was homozygous for the variant. The radiological features were reviewed, and being similar, but atypical, the phenotype was classified as a 'Schneckenbecken-like dysplasia.' The effect of the missense change was assessed using protein modelling techniques and indicated alterations in the mouth of the solute channel. A detailed biochemical investigation of SLC35D1 transport function and that of the missense variant p.(Pro133Leu) revealed that SLC35D1 acts as a general UDP-sugar transporter and that the p.(Pro133Leu) mutation resulted in a significant decrease in transport activity. The reduced transport activity observed for p.(Pro133Leu) was contrasted with in vitro activity for SLC35D1 p.(Thr65Pro), the loss-of-function mutation was associated with Schneckenbecken dysplasia. The functional classification of SLC35D1 as a general nucleotide sugar transporter of the endoplasmic reticulum suggests an expanded role for this transporter beyond chondroitin sulfate biosynthesis to a variety of important glycosylation reactions occurring in the endoplasmic reticulum.


Assuntos
Doenças Fetais/genética , Proteínas de Transporte de Monossacarídeos/genética , Osteocondrodisplasias/genética , Alelos , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Doenças Fetais/metabolismo , Doenças Fetais/patologia , Heterozigoto , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação de Sentido Incorreto , Osteocondrodisplasias/embriologia , Osteocondrodisplasias/metabolismo
3.
Lancet ; 393(10173): 747-757, 2019 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-30712880

RESUMO

BACKGROUND: Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). METHODS: In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. FINDINGS: The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 matched parental samples (analysed as 596 fetus-parental trios, including two sets of twins, and 14 fetus-parent dyads) were analysed by WES. After bioinformatic filtering and prioritisation according to allele frequency and effect on protein and inheritance pattern, 321 genetic variants (representing 255 potential diagnoses) were selected as potentially pathogenic genetic variants (diagnostic genetic variants), and these variants were reviewed by a multidisciplinary clinical review panel. A diagnostic genetic variant was identified in 52 (8·5%; 95% CI 6·4-11·0) of 610 fetuses assessed and an additional 24 (3·9%) fetuses had a variant of uncertain significance that had potential clinical usefulness. Detection of diagnostic genetic variants enabled us to distinguish between syndromic and non-syndromic fetal anomalies (eg, congenital heart disease only vs a syndrome with congenital heart disease and learning disability). Diagnostic genetic variants were present in 22 (15·4%) of 143 fetuses with multisystem anomalies (ie, more than one fetal structural anomaly), nine (11·1%) of 81 fetuses with cardiac anomalies, and ten (15·4%) of 65 fetuses with skeletal anomalies; these phenotypes were most commonly associated with diagnostic variants. However, diagnostic genetic variants were least common in fetuses with isolated increased nuchal translucency (≥4·0 mm) in the first trimester (in three [3·2%] of 93 fetuses). INTERPRETATION: WES facilitates genetic diagnosis of fetal structural anomalies, which enables more accurate predictions of fetal prognosis and risk of recurrence in future pregnancies. However, the overall detection of diagnostic genetic variants in a prospectively ascertained cohort with a broad range of fetal structural anomalies is lower than that suggested by previous smaller-scale studies of fewer phenotypes. WES improved the identification of genetic disorders in fetuses with structural abnormalities; however, before clinical implementation, careful consideration should be given to case selection to maximise clinical usefulness. FUNDING: UK Department of Health and Social Care and The Wellcome Trust.


Assuntos
Cariótipo Anormal/estatística & dados numéricos , Anormalidades Congênitas/genética , Sequenciamento do Exoma/estatística & dados numéricos , Desenvolvimento Fetal/genética , Feto/anormalidades , Cariótipo Anormal/embriologia , Aborto Eugênico/estatística & dados numéricos , Aborto Espontâneo/epidemiologia , Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/epidemiologia , Variações do Número de Cópias de DNA/genética , Feminino , Feto/diagnóstico por imagem , Humanos , Recém-Nascido , Nascido Vivo/epidemiologia , Masculino , Medição da Translucência Nucal , Pais , Morte Perinatal/etiologia , Gravidez , Estudos Prospectivos , Natimorto/epidemiologia , Sequenciamento do Exoma/métodos
4.
Genet Med ; 21(7): 1639-1643, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30546084

RESUMO

PURPOSE: There is little long-term, population-based data on uptake of prenatal diagnosis for Huntington disease (HD), a late-onset autosomal dominant neurodegenerative disorder, and the effect of the availability of preimplantation genetic diagnosis (PGD) on families' decisions about conventional prenatal diagnosis is not known. We report trends in prenatal diagnosis and preimplantation diagnosis for HD in the United Kingdom since services commenced. METHODS: Long-term UK-wide prospective case record-based service evaluation in 23 UK Regional Genetic Centres 1988-2015, and four UK PGD centers 2002-2015. RESULTS: From 1988 to 2015, 479 prenatal diagnoses were performed in the UK for HD. An exclusion approach was used in 150 (31%). The annual rate of HD prenatal diagnosis has remained around 18 (3.5/million) over 27 years, despite a steady increase in the use of PGD for HD since 2002. CONCLUSION: Although increasing number of couples are choosing either direct or exclusion PGD to prevent HD in their offspring, both direct and exclusion prenatal diagnosis remain important options in a health system where both PGD and prenatal diagnosis are state funded. At-risk couples should be informed of all options available to them, preferably prepregnancy.


Assuntos
Doença de Huntington/diagnóstico , Diagnóstico Pré-Natal , Feminino , Humanos , Masculino , Gravidez , Diagnóstico Pré-Implantação , Estudos Prospectivos , Reino Unido
6.
Pediatr Dev Pathol ; 21(6): 580-584, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29504492

RESUMO

Epidermolysis bullosa pruriginosa (EBP) is a rare subtype of EB which is characterized by intense pruritus with blistering and nodular or lichenoid lesions most prominent on the lower extremities. It is caused by variants in COL7A1 which encodes for type VII collagen. There is wide phenotypic and genotypic variability between affected individuals. We report 2 potentially pathogenic variants in COL7A1 occurring on the same allele in a family with EBP and autosomal dominant inheritance. Late-onset EBP and incomplete penetrance may lead to delayed presentation in affected family members with the same variants. The broad phenotypic variability seen in EBP suggests that further genotypic and environmental factors may influence presentation. Genetic and histopathological diagnosis is essential, given the considerable overlap with clinically similar presentations such as hypertrophic lichen planus.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Heterozigoto , Mutação de Sentido Incorreto , Adolescente , Epidermólise Bolhosa Distrófica/diagnóstico , Feminino , Marcadores Genéticos , Humanos , Masculino , Linhagem
7.
Am J Med Genet B Neuropsychiatr Genet ; 177(1): 35-39, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29095566

RESUMO

A consistent feature of predictive testing guidelines for Huntington's disease (HD) is the recommendation not to undertake predictive tests on those < 18 years. Exceptions are made but the extent of, and reasons for, deviation from the guidelines are unknown. The UK Huntington's Prediction Consortium has collected data annually on predictive tests undertaken from the 23 UK genetic centers. DNA analysis for HD in the Netherlands is centralized in the Laboratory for Diagnostic Genome Analysis in Leiden. In the UK, 60 tests were performed on minors between 1994 and 2015 representing 0.63% of the total number of tests performed. In the Netherlands, 23 tests were performed on minors between 1997 and 2016. The majority of the tests were performed on those aged 16 and 17 years for both countries (23% and 57% for the UK, and 26% and 57% for the Netherlands). Data on the reasons for testing were identified for 36 UK and 22 Netherlands cases and included: close to the age of 18 years, pregnancy, currently in local authority care and likely to have less support available after 18 years, person never having the capacity to consent and other miscellaneous reasons. This study documents the extent of HD testing of minors in the UK and the Netherlands and suggests that, in general, the recommendation is being followed. We provide some empirical evidence as to reasons why clinicians have departed from the recommendation. We do not advise changing the recommendation but suggest that testing of minors continues to be monitored.


Assuntos
Testes Genéticos/métodos , Testes Genéticos/normas , Doença de Huntington/diagnóstico , Adolescente , Feminino , Testes Genéticos/ética , Humanos , Masculino , Menores de Idade , Países Baixos/epidemiologia , Reino Unido/epidemiologia
8.
Am J Hum Genet ; 90(2): 356-62, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22284827

RESUMO

We have identified KIF11 mutations in individuals with syndromic autosomal-dominant microcephaly associated with lymphedema and/or chorioretinopathy. Initial whole-exome sequencing revealed heterozygous KIF11 mutations in three individuals with a combination of microcephaly and lymphedema from a microcephaly-lymphedema-chorioretinal-dysplasia cohort. Subsequent Sanger sequencing of KIF11 in a further 15 unrelated microcephalic probands with lymphedema and/or chorioretinopathy identified additional heterozygous mutations in 12 of them. KIF11 encodes EG5, a homotetramer kinesin motor. The variety of mutations we have found (two nonsense, two splice site, four missense, and six indels causing frameshifts) are all predicted to have an impact on protein function. EG5 has previously been shown to play a role in spindle assembly and function, and these findings highlight the critical role of proteins necessary for spindle formation in CNS development. Moreover, identification of KIF11 mutations in patients with chorioretinopathy and lymphedema suggests that EG5 is involved in the development and maintenance of retinal and lymphatic structures.


Assuntos
Colestase/genética , Anormalidades Congênitas/genética , Cinesinas/genética , Linfedema/congênito , Microcefalia/genética , Mutação , Anormalidades Múltiplas/genética , Estudos de Coortes , Exoma , Fácies , Feminino , Heterozigoto , Humanos , Linfedema/genética , Masculino , Linhagem , Fenótipo , Displasia Retiniana/genética
9.
Nat Genet ; 38(8): 910-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16845400

RESUMO

Aicardi-Goutières syndrome (AGS) is an autosomal recessive neurological disorder, the clinical and immunological features of which parallel those of congenital viral infection. Here we define the composition of the human ribonuclease H2 enzyme complex and show that AGS can result from mutations in the genes encoding any one of its three subunits. Our findings demonstrate a role for ribonuclease H in human neurological disease and suggest an unanticipated relationship between ribonuclease H2 and the antiviral immune response that warrants further investigation.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso/enzimologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Ribonuclease H/genética , Sequência de Aminoácidos , Sequência de Bases , DNA/genética , Encefalite Viral/congênito , Feminino , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Quaternária de Proteína , Subunidades Proteicas , Ribonuclease H/química , Ribonuclease H/metabolismo , Síndrome
10.
Hum Genet ; 133(9): 1117-25, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24889830

RESUMO

Sequencing technology is increasingly demonstrating the impact of genomic copy number variation (CNV) on phenotypes. Opposing variation in growth, head size, cognition and behaviour is known to result from deletions and reciprocal duplications of some genomic regions. We propose normative inversion of face shape, opposing difference from a matched norm, as a basis for investigating the effects of gene dosage on craniofacial development. We use dense surface modelling techniques to match any face (or part of a face) to a facial norm of unaffected individuals of matched age, sex and ethnicity and then we reverse the individual's face shape differences from the matched norm to produce the normative inversion. We demonstrate for five genomic regions, 4p16.3, 7q11.23, 11p15, 16p13.3 and 17p11.2, that such inversion for individuals with a duplication or (epi)-mutation produces facial forms remarkably similar to those associated with a deletion or opposite (epi-)mutation of the same region, and vice versa. The ability to visualise and quantify face shape effects of gene dosage is of major benefit for determining whether a CNV is the cause of the phenotype of an individual and for predicting reciprocal consequences. It enables face shape to be used as a relatively simple and inexpensive functional analysis of the gene(s) involved.


Assuntos
Transtornos Cromossômicos/genética , Face/anatomia & histologia , Dosagem de Genes , Adolescente , Adulto , População Negra/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 16 , Cromossomos Humanos Par 17 , Cromossomos Humanos Par 4 , Cromossomos Humanos Par 7 , Variações do Número de Cópias de DNA , Face/anormalidades , Feminino , Duplicação Gênica , Humanos , Imageamento Tridimensional , Masculino , Fenótipo , Deleção de Sequência , População Branca/genética
11.
Am J Hum Genet ; 88(5): 523-35, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21529752

RESUMO

We investigated three families whose offspring had extreme microcephaly at birth and profound mental retardation. Brain scans and postmortem data showed that affected individuals had brains less than 10% of expected size (≤10 standard deviation) and that in addition to a massive reduction in neuron production they displayed partially deficient cortical lamination (microlissencephaly). Other body systems were apparently unaffected and overall growth was normal. We found two distinct homozygous mutations of NDE1, c.83+1G>T (p.Ala29GlnfsX114) in a Turkish family and c.684_685del (p.Pro229TrpfsX85) in two families of Pakistani origin. Using patient cells, we found that c.83+1G>T led to the use of a novel splice site and to a frameshift after NDE1 exon 2. Transfection of tagged NDE1 constructs showed that the c.684_685del mutation resulted in a NDE1 that was unable to localize to the centrosome. By staining a patient-derived cell line that carried the c.83+1G>T mutation, we found that this endogeneously expressed mutated protein equally failed to localize to the centrosome. By examining human and mouse embryonic brains, we determined that NDE1 is highly expressed in neuroepithelial cells of the developing cerebral cortex, particularly at the centrosome. We show that NDE1 accumulates on the mitotic spindle of apical neural precursors in early neurogenesis. Thus, NDE1 deficiency causes both a severe failure of neurogenesis and a deficiency in cortical lamination. Our data further highlight the importance of the centrosome in multiple aspects of neurodevelopment.


Assuntos
Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Córtex Cerebral/embriologia , Proteínas Associadas aos Microtúbulos/genética , Neurogênese , Animais , Córtex Cerebral/crescimento & desenvolvimento , Pré-Escolar , Análise Mutacional de DNA , Células Epiteliais/metabolismo , Éxons , Feminino , Ligação Genética , Células HeLa , Homozigoto , Humanos , Lactente , Masculino , Camundongos , Microcefalia/genética , Mutação , Células-Tronco Neurais/metabolismo , Neurônios , Fenótipo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
13.
J Med Genet ; 50(9): 606-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23812910

RESUMO

BACKGROUND: Consensus clinical diagnostic criteria for neurofibromatosis type I (NF1) include café-au-lait macules and skinfold freckling. The former are frequently the earliest manifestation of NF1, and as such are of particular significance when assessing young children at risk of the condition. A phenotype of predominantly spinal neurofibromatosis has been identified in a small minority of families with NF1, often in association with a relative or absolute lack of cutaneous manifestations. An association with splicing and missense mutations has previously been reported for spinal neurofibromatosis, but on the basis of molecular results in only a few families. METHOD: Patients with spinal NF1 were identified through the Manchester nationally commissioned service for complex NF1. RESULTS: Five families with spinal NF1 were identified, with a broad spectrum of NF1 mutations, providing further evidence that this phenotype may arise in association with any genre of mutation in this gene. Pigmentary manifestations were absent or very mild in affected individuals. Several further affected individuals, some with extensive spinal root tumours, were ascertained when additional family members were assessed. CONCLUSIONS: Clinical NF1 consensus criteria cannot be used to exclude the diagnosis of spinal NF1, especially in childhood. This emphasises the importance of molecular confirmation in individuals and families with atypical presentations of NF1.


Assuntos
Manchas Café com Leite/diagnóstico , Neurofibromatose 1/diagnóstico , Doenças da Coluna Vertebral/diagnóstico , Adulto , Idoso , Manchas Café com Leite/genética , Manchas Café com Leite/patologia , Pré-Escolar , Feminino , Genes da Neurofibromatose 1 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Linhagem , Doenças da Coluna Vertebral/complicações , Doenças da Coluna Vertebral/genética , Doenças da Coluna Vertebral/patologia
14.
J Huntingtons Dis ; 13(2): 149-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669553

RESUMO

 Juvenile Huntington's disease (JHD) is rare. In the first decade of life speech difficulties, rigidity, and dystonia are common clinical motor symptoms, whereas onset in the second decade motor symptoms may sometimes resemble adult-onset Huntington's disease (AOHD). Cognitive decline is mostly detected by declining school performances. Behavioral symptoms in general do not differ from AOHD but may be confused with autism spectrum disorder or attention deficit hyperactivity disorder and lead to misdiagnosis and/or diagnostic delay. JHD specific features are epilepsy, ataxia, spasticity, pain, itching, and possibly liver steatosis. Disease progression of JHD is faster compared to AOHD and the disease duration is shorter, particularly in case of higher CAG repeat lengths. The diagnosis is based on clinical judgement in combination with a positive family history and/or DNA analysis after careful consideration. Repeat length in JHD is usually > 55 and caused by anticipation, usually via paternal transmission. There are no pharmacological and multidisciplinary guidelines for JHD treatment. Future perspectives for earlier diagnosis are better diagnostic markers such as qualitative MRI and neurofilament light in serum.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/genética , Adolescente , Criança , Progressão da Doença , Idade de Início
15.
Am J Hum Genet ; 87(6): 757-67, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21129728

RESUMO

Altered Bone Morphogenetic Protein (BMP) signaling leads to multiple developmental defects, including brachydactyly and deafness. Here we identify chondroitin synthase 1 (CHSY1) as a potential mediator of BMP effects. We show that loss of human CHSY1 function causes autosomal-recessive Temtamy preaxial brachydactyly syndrome (TPBS), mainly characterized by limb malformations, short stature, and hearing loss. After mapping the TPBS locus to chromosome 15q26-qterm, we identified causative mutations in five consanguineous TPBS families. In zebrafish, antisense-mediated chsy1 knockdown causes defects in multiple developmental processes, some of which are likely to also be causative in the etiology of TPBS. In the inner ears of zebrafish larvae, chsy1 is expressed similarly to the BMP inhibitor dan and in a complementary fashion to bmp2b. Furthermore, unrestricted Bmp2b signaling or loss of Dan activity leads to reduced chsy1 expression and, during epithelial morphogenesis, defects similar to those that occur upon Chsy1 inactivation, indicating that Bmp signaling affects inner-ear development by repressing chsy1. In addition, we obtained strikingly similar zebrafish phenotypes after chsy1 overexpression, which might explain why, in humans, brachydactyly can be caused by mutations leading either to loss or to gain of BMP signaling.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Mutação , N-Acetilgalactosaminiltransferases/genética , Transdução de Sinais , Animais , Braquidactilia , Mapeamento Cromossômico , Cromossomos Humanos Par 15 , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , Síndrome , Peixe-Zebra
16.
Nat Genet ; 33(4): 487-91, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12612583

RESUMO

Remodeling of the cytoskeleton is central to the modulation of cell shape and migration. Filamin A, encoded by the gene FLNA, is a widely expressed protein that regulates re-organization of the actin cytoskeleton by interacting with integrins, transmembrane receptor complexes and second messengers. We identified localized mutations in FLNA that conserve the reading frame and lead to a broad range of congenital malformations, affecting craniofacial structures, skeleton, brain, viscera and urogenital tract, in four X-linked human disorders: otopalatodigital syndrome types 1 (OPD1; OMIM 311300) and 2 (OPD2; OMIM 304120), frontometaphyseal dysplasia (FMD; OMIM 305620) and Melnick-Needles syndrome (MNS; OMIM 309350). Several mutations are recurrent, and all are clustered into four regions of the gene: the actin-binding domain and rod domain repeats 3, 10 and 14/15. Our findings contrast with previous observations that loss of function of FLNA is embryonic lethal in males but manifests in females as a localized neuronal migration disorder, called periventricular nodular heterotopia (PVNH; refs. 3-6). The patterns of mutation, X-chromosome inactivation and phenotypic manifestations in the newly described mutations indicate that they have gain-of-function effects, implicating filamin A in signaling pathways that mediate organogenesis in multiple systems during embryonic development.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos X , Proteínas Contráteis/genética , Citoesqueleto/metabolismo , Ligação Genética , Proteínas dos Microfilamentos/genética , Mutação , Polimorfismo Genético , Alelos , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Análise Mutacional de DNA , Feminino , Filaminas , Humanos , Íntrons , Masculino , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Síndrome , Distribuição Tecidual
17.
Nat Genet ; 36(4): 400-4, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15052268

RESUMO

ARC syndrome (OMIM 208085) is an autosomal recessive multisystem disorder characterized by neurogenic arthrogryposis multiplex congenita, renal tubular dysfunction and neonatal cholestasis with bile duct hypoplasia and low gamma glutamyl transpeptidase (gGT) activity. Platelet dysfunction is common. Affected infants do not thrive and usually die in the first year of life. To elucidate the molecular basis of ARC, we mapped the disease to a 7-cM interval on 15q26.1 and then identified germline mutations in the gene VPS33B in 14 kindreds with ARC. VPS33B encodes a homolog of the class C yeast vacuolar protein sorting gene, Vps33, that contains a Sec1-like domain important in the regulation of vesicle-to-target SNARE complex formation and subsequent membrane fusion.


Assuntos
Artrogripose/genética , Colestase/genética , Nefropatias/genética , Fusão de Membrana/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Mutação , Proteínas/genética , Proteínas de Transporte Vesicular , Western Blotting , Linhagem Celular , Cromossomos Humanos Par 15 , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Masculino , Fusão de Membrana/genética , Proteínas de Membrana/química , Plasmídeos , Proteínas/química , Proteínas SNARE , Síndrome
18.
J Am Heart Assoc ; 12(17): e029100, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37589201

RESUMO

Background Sudden infant death syndrome (SIDS) is the leading cause of death up to age 1. Sudden unexplained death in childhood (SUDC) is similar but affects mostly toddlers aged 1 to 4. SUDC is rarer than SIDS, and although cardiogenetic testing (molecular autopsy) identifies an underlying cause in a fraction of SIDS, less is known about SUDC. Methods and Results Seventy-seven SIDS and 16 SUDC cases underwent molecular autopsy with 25 definitive-evidence arrhythmia-associated genes. In 18 cases, another 76 genes with varying degrees of evidence were analyzed. Parents were offered cascade screening. Double-blind review of clinical-genetic data established genotype-phenotype correlations. The yield of likely pathogenic variants in the 25 genes was higher in SUDC than in SIDS (18.8% [3/16] versus 2.6% [2/77], respectively; P=0.03), whereas novel/ultra-rare variants of uncertain significance were comparably represented. Rare variants of uncertain significance and likely benign variants were found only in SIDS. In cases with expanded analyses, likely pathogenic/likely benign variants stemmed only from definitive-evidence genes, whereas all other genes contributed only variants of uncertain significance. Among 24 parents screened, variant status and phenotype largely agreed, and 3 cases positively correlated for cardiac channelopathies. Genotype-phenotype correlations significantly aided variant adjudication. Conclusions Genetic yield is higher in SUDC than in SIDS although, in both, it is contributed only by definitive-evidence genes. SIDS/SUDC cascade family screening facilitates establishment or dismissal of a diagnosis through definitive variant adjudication indicating that anonymity is no longer justifiable. Channelopathies may underlie a relevant fraction of SUDC. Binary classifications of genetic causality (pathogenic versus benign) could not always be adequate.


Assuntos
Canalopatias , Morte Súbita do Lactente , Pré-Escolar , Humanos , Autopsia , Coração , Exame Físico , Morte Súbita do Lactente/genética
19.
Am J Med Genet A ; 158A(5): 996-1004, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22438245

RESUMO

It is generally accepted that the facial phenotype of Wolf-Hirschhorn syndrome is caused by deletions of either Wolf-Hirschhorn critical regions 1 or 2 (WHSCR 1-2). Here, we identify a 432 kb deletion located 600 kb proximal to both WHSCR1-2 in a patient with a WHS facial phenotype. Seven genes are underlying this deletion region including FAM193a, ADD1, NOP14, GRK4, MFSD10, SH3BP2, TNIP2. The clinical diagnosis of WHS facial phenotype was confirmed by 3D facial analysis using dense surface modeling. Our results suggest that the WHSCR1-2 flanking sequence contributes directly or indirectly to the severity of WHS. Sequencing the Wolf-Hirschhorn syndrome candidate 1 and 2 genes did not reveal any mutations. Long range position effects of the deletion that could influence gene expression within the WHSCR were excluded in EBV cell lines derived from patient lymphoblasts. We hypothesize that either (1) this locus harbors regulatory sequences which affect gene expression in the WHSCR1-2 in a defined temporal and spatial developmental window or (2) that this locus is additive to deletions of WHSCR1-2 increasing the phenotypic expression.


Assuntos
Deleção de Sequência , Síndrome de Wolf-Hirschhorn/genética , Anormalidades Múltiplas/genética , Células Cultivadas , Face/anormalidades , Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Humanos , Proteínas Repressoras/genética , Fatores de Elongação da Transcrição/genética
20.
Am J Med Genet A ; 155A(10): 2397-408, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22043478

RESUMO

Osteopathia striata with cranial sclerosis (OSCS) is an X-linked disease caused by truncating mutations in WTX. Females exhibit sclerotic striations on the long bones, cranial sclerosis, and craniofacial dysmorphism. Males with OSCS have significant skeletal sclerosis, do not have striations but do display a more severe phenotype commonly associated with gross structural malformations, patterning defects, and significant pre- and postnatal lethality. The recent description of mutations in WTX underlying OSCS has led to the identification of a milder, survivable phenotype in males. Individuals with this presentation can have, in addition to skeletal sclerosis, Hirschsprung disease, joint contractures, cardiomyopathy, and neuromuscular anomalies. A diagnosis of OSCS should be considered in males with macrocephaly, skeletal sclerosis that is most marked in the cranium and the absence of metaphyseal striations. The observation of striations in males may be indicative of a WTX mutation in a mosaic state supporting the contention that this sign in females is indicative of the differential lyonization of cells in the osteoblastic lineage.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/patologia , Osteosclerose/patologia , Fenótipo , Proteínas Adaptadoras de Transdução de Sinal/genética , Osso e Ossos/patologia , Análise Mutacional de DNA , Primers do DNA/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Luciferases , Masculino , Megalencefalia/patologia , Osteosclerose/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA