Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Comput Biol Med ; 135: 104641, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298436

RESUMO

The results of numerical simulations of cardiac electromechanics are typically characterized by a long transient before reaching a periodic solution known as limit cycle. This yields a serious computational overhead, as the only clinically relevant output is associated with such limit cycle. To accelerate the convergence to the limit cycle, we propose a strategy based on a surrogate model, wherein the computationally demanding 3D components are replaced by a 0D emulator, built through an automated data-driven algorithm on the basis of pressure-volume transients of as few as three heartbeats simulated with the 3D model. The 0D emulator, consisting of a time-dependent pressure-volume relationship, can provide the 3D model with an initial guess, such that in just two heartbeats a solution is reached that is as close to the limit cycle as the one obtained after more than 20 heartbeats with the 3D model. The 0D emulator is also recommended in many-query settings (e.g. when performing sensitivity analysis, parameter estimation and uncertainty quantification), that call for the repeated solution of the model for different values of the parameters. Indeed, the construction of the emulator does not have to be repeated when the parameters of the circulation model it is coupled with vary. Finally, should the parameters of the 3D electromechanical model vary as well, we propose a parametric emulator, obtained by interpolation of emulators constructed for given values of the parameters. This paper is accompanied by a Python library implementing the proposed algorithm, open to integration with existing cardiac solvers.


Assuntos
Coração , Modelos Cardiovasculares , Algoritmos , Incerteza
2.
Proc Math Phys Eng Sci ; 477(2253): 20210027, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35153578

RESUMO

The COVID-19 epidemic is the latest in a long list of pandemics that have affected humankind in the last century. In this paper, we propose a novel mathematical epidemiological model named SUIHTER from the names of the seven compartments that it comprises: susceptible uninfected individuals (S), undetected (both asymptomatic and symptomatic) infected (U), isolated infected (I), hospitalized (H), threatened (T), extinct (E) and recovered (R). A suitable parameter calibration that is based on the combined use of the least-squares method and the Markov chain Monte Carlo method is proposed with the aim of reproducing the past history of the epidemic in Italy, which surfaced in late February and is still ongoing to date, and of validating SUIHTER in terms of its predicting capabilities. A distinctive feature of the new model is that it allows a one-to-one calibration strategy between the model compartments and the data that are made available daily by the Italian Civil Protection Department. The new model is then applied to the analysis of the Italian epidemic with emphasis on the second outbreak, which emerged in autumn 2020. In particular, we show that the epidemiological model SUIHTER can be suitably used in a predictive manner to perform scenario analysis at a national level.

3.
Front Physiol ; 12: 673612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305637

RESUMO

In the context of cardiac electrophysiology, we propose a novel computational approach to highlight and explain the long-debated mechanisms behind atrial fibrillation (AF) and to reliably numerically predict its induction and sustainment. A key role is played, in this respect, by a new way of setting a parametrization of electrophysiological mathematical models based on conduction velocities; these latter are estimated from high-density mapping data, which provide a detailed characterization of patients' electrophysiological substrate during sinus rhythm. We integrate numerically approximated conduction velocities into a mathematical model consisting of a coupled system of partial and ordinary differential equations, formed by the monodomain equation and the Courtemanche-Ramirez-Nattel model. Our new model parametrization is then adopted to predict the formation and self-sustainment of localized reentries characterizing atrial fibrillation, by numerically simulating the onset of ectopic beats from the pulmonary veins. We investigate the paroxysmal and the persistent form of AF starting from electro-anatomical maps of two patients. The model's response to stimulation shows how substrate characteristics play a key role in inducing and sustaining these arrhythmias. Localized reentries are less frequent and less stable in case of paroxysmal AF, while they tend to anchor themselves in areas affected by severe slow conduction in case of persistent AF.

4.
Artigo em Inglês | MEDLINE | ID: mdl-27661463

RESUMO

Cardiac Purkinje fibers provide an important pathway to the coordinated contraction of the heart. We present a numerical algorithm for the solution of electrophysiology problems across the Purkinje network that is efficient enough to be used in in silico studies on realistic Purkinje networks with physiologically detailed models of ion exchange at the cell membrane. The algorithm is on the basis of operator splitting and is provided with 3 different implementations: pure CPU, hybrid CPU/GPU, and pure GPU. Compared to our previous work, we modify the explicit gap junction term at network bifurcations to improve its mathematical consistency. Due to this improved consistency of the model, we are able to perform an empirical convergence study against analytical solutions. The study verified that all 3 implementations produce equivalent convergence rates, and shows that the algorithm produces equivalent result across different hardware platforms. Finally, we compare the efficiency of all 3 implementations on Purkinje networks of increasing spatial resolution using membrane models of increasing complexity. Both hybrid and pure GPU implementations outperform the pure CPU implementation, but their relative performance difference depends on the size of the Purkinje network and the complexity of the membrane model used.


Assuntos
Algoritmos , Eletrofisiologia Cardíaca , Simulação por Computador , Ramos Subendocárdicos/fisiologia , Humanos
5.
Comput Methods Biomech Biomed Engin ; 20(2): 171-181, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27456412

RESUMO

We provide a computational comparison of the performance of stentless and stented aortic prostheses, in terms of aortic root displacements and internal stresses. To this aim, we consider three real patients; for each of them, we draw the two prostheses configurations, which are characterized by different mechanical properties and we also consider the native configuration. For each of these scenarios, we solve the fluid-structure interaction problem arising between blood and aortic root, through Finite Elements. In particular, the Arbitrary Lagrangian-Eulerian formulation is used for the numerical solution of the fluid-dynamic equations and a hyperelastic material model is adopted to predict the mechanical response of the aortic wall and the two prostheses. The computational results are analyzed in terms of aortic flow, internal wall stresses and aortic wall/prosthesis displacements; a quantitative comparison of the mechanical behavior of the three scenarios is reported. The numerical results highlight a good agreement between stentless and native displacements and internal wall stresses, whereas higher/non-physiological stresses are found for the stented case.


Assuntos
Aorta/cirurgia , Valva Aórtica/cirurgia , Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Bioprótese , Simulação por Computador , Hemodinâmica , Humanos , Masculino , Modelos Teóricos , Stents
6.
J Biomech ; 38(4): 903-17, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15713312

RESUMO

In this work we introduce and discuss several mathematical models, based on partial differential equations, devised to study the coupled transport of macromolecules as low-density lipoproteins in the blood stream and in the arterial walls. These models are accurate provided that a suitable set of physical parameters characterizing the physical properties of the molecules and of the wall layers are available. Here we turn our attention on this aspect, and propose a new methodology to compute the physical parameters needed for the model set up, starting from available in vivo measurements. Then, we focus on the study of the accumulation of low-density lipoproteins in vascular districts featuring a highly disturbed flow. Our results demonstrate that mathematical models whose set up procedure benefits from an experimental feedback provide reliable information not only qualitatively, but also quantitatively. Their application to geometrically perturbed vascular districts (as for example a severe stenosis) shows that geometrical parameters such as curvature and variations of the lumenal section strongly influence the accumulation of low-density lipoproteins within the wall. For instance, in a stenotic segment with 75% area constriction, the LDL concentration at the lumenal side of the wall is about 10% higher than for the undisturbed segment.


Assuntos
Artérias/metabolismo , Lipoproteínas LDL/metabolismo , Modelos Teóricos , Arteriopatias Oclusivas , Artérias/anatomia & histologia , Artérias/patologia , Transporte Biológico , Constrição Patológica , Hemorreologia , Humanos , Métodos , Modelos Biológicos , Túnica Íntima
7.
Biorheology ; 39(3-4): 359-64, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12122253

RESUMO

This work was motivated by the problems of analysing detailed 3D models of vascular districts with complex anatomy. It suggests an approach to prescribing realistic boundary conditions to use in order to obtain information on local as well as global haemodynamics. A method was developed which simultaneously solves Navier-Stokes equations for local information and a non-linear system of ordinary differential equations for global information. This is based on the principle that an anatomically detailed 3D model of a cardiovascular district can be achieved by using the finite element method. In turn the finite element method requires a specific boundary condition set. The approach outlined in this work is to include the system of ordinary differential equations in the boundary condition set. Such a multiscale approach was first applied to two controls: (i) a 3D model of a straight tube in a simple hydraulic network and (ii) a 3D model of a straight coronary vessel in a lumped-parameter model of the cardiovascular system. The results obtained are very close to the solutions available for the pipe geometry. This paper also presents preliminary results from the application of the methodology to a particular haemodynamic problem: namely the fluid dynamics of a systemic-to-pulmonary shunt in paediatric cardiac surgery.


Assuntos
Imageamento Tridimensional , Modelos Cardiovasculares , Cirurgia Assistida por Computador , Derivação Arteriovenosa Cirúrgica , Criança , Análise de Elementos Finitos , Hemodinâmica , Humanos
8.
Int J Numer Method Biomed Eng ; 28(1): 52-71, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25830205

RESUMO

We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that there is a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from a Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling and show that our numerical scheme is efficient and accurate.


Assuntos
Coração/fisiologia , Modelos Cardiovasculares , Estresse Mecânico , Anisotropia , Simulação por Computador , Difusão , Elasticidade/fisiologia , Análise de Elementos Finitos , Fenômenos Mecânicos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA