Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000813

RESUMO

Real-Time RFI Detection and Flagging (RT-RDF) for microwave radiometers is a versatile new FPGA algorithm designed to detect and flag Radio-Frequency Interference (RFI) in microwave radiometers. This block utilizes computationally-efficient techniques to identify and analyze RF signals, allowing the system to take appropriate measures to mitigate interference and maintain reliable performance. With L-Band microwave radiometry as the main application, this RFI detection algorithm focuses on the Kurtogram and Spectrogram to detect non-Gaussian behavior. To gain further modularity, an FFT-based filter bank is used to divide the receiver's bandwidth into several sub-bands within the band of interest of the instrument, depending on the application. Multiple blanking strategies can then be applied in each band using the provided detection flags. The algorithm can be re-configured in the field, for example with dynamic integration times to support operation in different environments, or configurable thresholds to account for variable RFI environments. A validation and testing campaign has been performed on multiple scenarios with the ARIEL commercial microwave radiometer, and the results confirm the excellent performance of the system.

2.
Sensors (Basel) ; 19(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818880

RESUMO

This manuscript describes the Microwave Interferometric Reflectometer (MIR) instrument, a multi-beam dual-band GNSS-Reflectometer with beam-steering capabilities built to assess the performance of a PAssive Reflectrometry and Interferometry System-In Orbit Demonstrator (PARIS-IoD) like instrument and to compare the performance of different GNSS-R techniques and signals. The instrument is capable of tracking up to 4 different GNSS satellites, two at L1/E1 band, and two at L5/E5 band. The calibration procedure of the up- and down-looking arrays is presented, the calibration performance is evaluated, and the results of the validation experiments carried out before the field experiments are shown in this paper.

3.
Sensors (Basel) ; 17(5)2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28489056

RESUMO

MERITXELL is a ground-based multisensor instrument that includes a multiband dual-polarization radiometer, a GNSS reflectometer, and several optical sensors. Its main goals are twofold: to test data fusion techniques, and to develop Radio-Frequency Interference (RFI) detection, localization and mitigation techniques. The former is necessary to retrieve complementary data useful to develop geophysical models with improved accuracy, whereas the latter aims at solving one of the most important problems of microwave radiometry. This paper describes the hardware design, the instrument control architecture, the calibration of the radiometer, and several captures of RFI signals taken with MERITXELL in urban environment. The multiband radiometer has a dual linear polarization total-power radiometer topology, and it covers the L-, S-, C-, X-, K-, Ka-, and W-band. Its back-end stage is based on a spectrum analyzer structure which allows to perform real-time signal processing, while the rest of the sensors are controlled by a host computer where the off-line processing takes place. The calibration of the radiometer is performed using the hot-cold load procedure, together with the tipping curves technique in the case of the five upper frequency bands. Finally, some captures of RFI signals are shown for most of the radiometric bands under analysis, which evidence the problem of RFI in microwave radiometry, and the limitations they impose in external calibration.

4.
Sensors (Basel) ; 17(1)2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28106825

RESUMO

This work addresses the accuracy of the Global Navigation Satellite Systems (GNSS)-Reflectometry (GNSS-R) scatterometric measurements considering the presence of both coherent and incoherent scattered components, for both conventional GNSS-R (cGNSS-R) and interferometric GNSS-R (iGNSS-R) techniques. The coherent component is present for some type of surfaces, and it has been neglected until now because it vanishes for the sea surface scattering case. Taking into account the presence of both scattering components, the estimated Signal-to-Noise Ratio (SNR) for both techniques is computed based on the detectability criterion, as it is done in conventional GNSS applications. The non-coherent averaging operation is considered from a general point of view, taking into account that thermal noise contributions can be reduced by an extra factor of 0.88 dB when using partially overlapped or partially correlated samples. After the SNRs are derived, the received waveform's peak variability is computed, which determines the system's capability to measure geophysical parameters. This theoretical derivations are applied to the United Kingdom (UK) TechDemoSat-1 (UK TDS-1) and to the future GNSS REflectometry, Radio Occultation and Scatterometry on board the International Space Station (ISS) (GEROS-ISS) scenarios, in order to estimate the expected scatterometric performance of both missions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA