Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(15): 6091-6097, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35877983

RESUMO

Skyrmion racetrack memories are highly attractive for next-generation data storage technologies. Skyrmions are noncollinear spin textures stabilized by chiral interactions. To achieve a fast-operating memory device, it is critical to move skyrmions at high speeds. The skyrmion dynamics induced by spin-orbit torques (SOTs) in the commonly studied ferromagnetic films is hindered by strong pinning effects and a large skyrmion Hall effect causing deflection of the skyrmion toward the racetrack edge, which can lead to information loss. Here, we investigate the current-induced nucleation and motion of skyrmions in ferrimagnetic Pt/CoGd/(W or Ta) thin films. We first reveal field-free skyrmion nucleation mediated by Joule heating. We then achieve fast skyrmion motion driven by SOTs with velocities as high as 610 m s-1 and a small skyrmion Hall angle |θSkHE| ≲ 3°. Our results show that ferrimagnets are better candidates for fast skyrmion-based memory devices with low risk of information loss.

2.
Adv Sci (Weinh) ; 8(18): e2100481, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338450

RESUMO

Ferrimagnetic thin films are attractive for low-power spintronic applications because of their low magnetization, small angular momentum, and fast spin dynamics. Spin orbit torques (SOT) can be applied with proximal heavy metals that also generate interfacial Dzyaloshinskii-Moriya interactions (DMI), which can stabilize ultrasmall skyrmions and enable fast domain wall motion. Here, the properties of a ferrimagnetic CoGd alloy between two heavy metals to increase the SOT efficiency, while maintaining a significant DMI is studied. SOT switching for various capping layers and alloy compositions shows that Pt/CoGd/(W or Ta) films enable more energy-efficient SOT magnetization switching than Pt/CoGd/Ir. Spin-torque ferromagnetic resonance confirms that Pt/CoGd/W has the highest spin-Hall angle of 16.5%, hence SOT efficiency, larger than Pt/CoGd/(Ta or Ir). Density functional theory calculations indicate that CoGd films capped by W or Ta have the largest DMI energy, 0.38 and 0.32 mJ m-2 , respectively. These results show that Pt/CoGd/W is a very promising ferrimagnetic structure to achieve small skyrmions and to move them efficiently with current.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA