RESUMO
BACKGROUND: The crop microbial communities are shaped by interactions between the host, microbes and the environment, however, their relative contribution is beginning to be understood. Here, we explore these interactions in the leaf bacterial community across 3024 rice accessions. FINDINGS: By using unmapped DNA sequencing reads as microbial reads, we characterized the structure of the rice bacterial microbiome. We identified central bacteria taxa that emerge as microbial "hubs" and may have an influence on the network of host-microbe interactions. We found regions in the rice genome that might control the assembly of these microbial hubs. To our knowledge this is one of the first studies that uses raw data from plant genome sequencing projects to characterize the leaf bacterial communities. CONCLUSION: We showed, that the structure of the rice leaf microbiome is modulated by multiple interactions among host, microbes, and environment. Our data provide insight into the factors influencing microbial assemblage in the rice leaf and also opens the door for future initiatives to modulate rice consortia for crop improvement efforts.
RESUMO
The microbiomes of phloem-feeding insects include functional bacteria and yeasts essential for herbivore survival and development. Changes in microbiome composition are implicated in virulence adaptation by herbivores to host plant species or host populations (including crop varieties). We examined patterns in adaptation by the green leafhopper, Nephotettix virescens, to near-isogenic rice lines (NILs) with one or two resistance genes and the recurrent parent T65, without resistance genes. Only the line with two resistance genes was effective in reducing leafhopper fitness. After 20 generations on the resistant line, selected leafhoppers attained similar survival, weight gain, and egg laying to leafhoppers that were continually reared on the susceptible recurrent parent, indicating that they had adapted to the resistant host. By sequencing the 16s rRNA gene, we described the microbiome of leafhoppers from colonies associated with five collection sites, and continually reared or switched between NILs. The microbiomes included 69-119 OTUs of which 44 occurred in ≥90% of samples. Of these, 14 OTUs were assigned to the obligate symbiont Candidatus sulcia clade. After 20 generations of selection, collection site had a greater effect than host plant on microbiome composition. Six bacteria genera, including C. sulcia, were associated with leafhopper virulence. However, there was significant within-treatment, site-related variability in the prevalence of these taxa such that the mechanisms underlying their association with virulence remain to be determined. Our results imply that these taxa are associated with leafhopper nutrition. Ours is the first study to describe microbiome diversity and composition in rice leafhoppers. We discuss our results in light of the multiple functions of herbivore microbiomes during virulence adaptation in insect herbivores.